Themis R. Kyriakides

Learn More
Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of(More)
Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are the earliest tissue-engineered vascular grafts (TEVGs) to be used clinically. These TEVGs transform into living blood vessels in vivo, with an endothelial cell (EC) lining invested by smooth muscle cells (SMCs); however, the process by which this occurs is unclear. To test if the(More)
Thrombospondin (TSP) 1 and 2, share the same overall structure and interact with a number of the same cell-surface receptors. In an attempt to elucidate their biological roles more clearly, we generated double-TSP1/TSP2-null animals and compared their phenotype to those of TSP1- and TSP2-null mice. Double-null mice exhibited an apparent phenotype that(More)
The protein p27Kip1 is an inhibitor of cell division. An increase in p27 causes proliferating cells to exit from the cell cycle, and a decrease in p27 is necessary for quiescent cells to resume division. Abnormally low amounts of p27 are associated with pathological states of excessive cell proliferation, especially cancers. In normal and tumour cells, p27(More)
Mice that lack the extracellular matrix protein thrombospondin 2 have, among several abnormalities, an increase in vascular density, abnormal collagen fibrils, and dermal fibroblasts that are defective in adhesion. These findings suggested that responses involving these processes, such as wound healing, might be altered. To investigate the healing process,(More)
Thrombospondin 2 (TSP2)-null mice, generated by disruption of the Thbs2 gene, display a variety of connective tissue abnormalities, including fragile skin and the presence of abnormally large collagen fibrils with irregular contours in skin and tendon. In this study we demonstrate that TSP2-null skin fibroblasts show a defect in attachment to a number of(More)
Thrombospondin (TSP) 2 is a close relative of TSP1 but differs in its temporal and spatial distribution in the mouse. This difference in expression undoubtedly reflects the marked disparity in the DNA sequences of the promoters in the genes encoding the two proteins. The synthesis of TSP2 occurs primarily in connective tissues of the developing and growing(More)
Mice that lack the matricellular protein thrombospondin 2 (TSP2) develop a pleiotropic phenotype characterized by morphological changes in connective tissues, an increase in vascular density, and a propensity for bleeding. Furthermore, dermal cells derived from TSP2-null mice display adhesion defects, a finding that implicates TSP2 in cell-matrix(More)
The angiogenic switch during tumorigenesis is thought to be induced by a change in the balance of pro- angiogenic and anti-angiogenic factors. To elucidate the biological role of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, we subjected TSP-2-deficient and wild-type mice to a chemical skin carcinogenesis(More)
Thrombospondin-2 (TSP2) is an inhibitor of angiogenesis with pro-apoptotic and anti-proliferative effects on endothelial cells. Mice deficient in this matricellular protein display improved recovery from ischemia and accelerated wound healing associated with alterations in angiogenesis and extracellular matrix remodeling. In this study, we probed the(More)