Learn More
Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of(More)
Mice that lack the extracellular matrix protein thrombospondin 2 have, among several abnormalities, an increase in vascular density, abnormal collagen fibrils, and dermal fibroblasts that are defective in adhesion. These findings suggested that responses involving these processes, such as wound healing, might be altered. To investigate the healing process,(More)
The protein p27Kip1 is an inhibitor of cell division. An increase in p27 causes proliferating cells to exit from the cell cycle, and a decrease in p27 is necessary for quiescent cells to resume division. Abnormally low amounts of p27 are associated with pathological states of excessive cell proliferation, especially cancers. In normal and tumour cells, p27(More)
Thrombospondin (TSP) 1 and 2, share the same overall structure and interact with a number of the same cell-surface receptors. In an attempt to elucidate their biological roles more clearly, we generated double-TSP1/TSP2-null animals and compared their phenotype to those of TSP1- and TSP2-null mice. Double-null mice exhibited an apparent phenotype that(More)
Mice that lack the matricellular protein thrombospondin 2 (TSP2) develop a pleiotropic phenotype characterized by morphological changes in connective tissues, an increase in vascular density, and a propensity for bleeding. Furthermore, dermal cells derived from TSP2-null mice display adhesion defects, a finding that implicates TSP2 in cell-matrix(More)
Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of(More)
The matricellular angiogenesis inhibitor, thrombospondin (TSP) 2, has been shown to be an important modulator of wound healing and the foreign body response. Specifically, TSP2-null mice display improved healing with minimal scarring and form well-vascularized foreign body capsules. In this study we performed subcutaneous implantation of sponges and(More)
The phenotype of thrombospondin 2 (TSP2)-null mice includes abnormalities in collagen fibrils and increases in ligamentous laxity, vascular density, and bleeding time. In this study, analyses by computerized tomography (CT) revealed that cortical density was increased in long bones of TSP2-null mice. Histomorphometric analysis showed that the mid-diaphyseal(More)
Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are the earliest tissue-engineered vascular grafts (TEVGs) to be used clinically. These TEVGs transform into living blood vessels in vivo, with an endothelial cell (EC) lining invested by smooth muscle cells (SMCs); however, the process by which this occurs is unclear. To test if the(More)
Thrombospondins (TSPs) 1 and 2 are extracellular modular glycoproteins that are best known for their anti-angiogenic properties and their ability to modulate cell-matrix interactions. However, these proteins, and in particular TSP2, are pleiotropic in function and affect processes as disparate as bone growth and hemostasis. In recognition of their ability(More)