Thaya Ramaesh

Learn More
PURPOSE To investigate corneal abnormalities in heterozygous Pax6(+/Sey-Neu) (Pax6(+/-), small eye) mice and compare them with aniridia-related keratopathy in PAX6(+/-) patients. METHODS Fetal and postnatal corneal histopathology, adult corneal thickness, and the distribution of K12-immunostained cells were compared in wild-type and Pax6(+/-) mice. (More)
Patterns of growth and cell movement in the developing and adult corneal epithelium were investigated by analysing clonal patches of LacZ-expressing cells in chimeric and X-inactivation mosaic mice. It was found that cell proliferation throughout the basal corneal epithelium during embryogenesis and early postnatal life creates a disordered mosaic pattern(More)
The mouse corneal epithelium is a continuously renewing 5–6 cell thick protective layer covering the corneal surface, which regenerates rapidly when injured. It is maintained by peripherally located limbal stem cells (LSCs) that produce transient amplifying cells (TACs) which proliferate, migrate centripetally, differentiate and are eventually shed from the(More)
Heterozygosity for a PAX6 deficiency (PAX6+/-) results in low levels of the PAX6 transcription factor and causes aniridia. Corneal changes in aniridia-related keratopathy (ARK) include peripheral pannus and epithelial abnormalities, which eventually result in corneal opacity and contribute to visual loss. The corneal abnormalities of Pax6+/- mice provide an(More)
Mutations in PAX6/Pax6 lead to a variety of ocular anomalies in humans and mice. The aim of the study was to characterise the ocular abnormalities caused by the missense Pax6(Leca4) mutation and compare them to published observations on Pax6 alleles that are functionally equivalent to Pax6(-) null alleles (such as Pax6(Sey) and Pax6(Sey-Neu)) and human(More)
PURPOSE To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. METHODS Histologic features of eyes from hemizygous PAX77(+/-) transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77(+/-)<-->wild-type and control wild-type<-->wild-type(More)
PURPOSE Corneal wound healing involves a cascade of interactions between the epithelium and stroma. Pax6 is upregulated, and early events include epithelial cell migration and apoptosis of superficial keratocytes. The mouse heterozygous Pax6 (Pax6+/-) corneal phenotype mimics human aniridia-related keratopathy (ARK), and some aspects of wound healing have(More)
Heterozygosity for PAX6 deficiency (PAX6+/-) results in aniridia. Corneal changes in aniridia-related keratopathy (ARK) include corneal vascular pannus formation, conjunctival invasion of the corneal surface, corneal epithelial erosions and epithelial abnormalities, which eventually result in corneal opacity and contribute to visual loss. Corneal changes in(More)
Three-dimensional reconstruction and BrdU incorporation have been used to quantify the development and growth of the mouse mandible and to analyse its relationship to Meckel's cartilage and the molar teeth. The mandible anlage is first histologically detectable at E13.5 as paired plates of osteoid tissue within condensed mesenchyme (approximately 0.9 mm(More)
BACKGROUND Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including(More)