Learn More
The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural(More)
To provide detailed information and insight into the drug-target interaction, structure, solvation, and dynamic and thermodynamic properties, the three known-neuraminidase inhibitors-oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV)-embedded in the catalytic site of neuraminidase (NA) subtype N1 were studied using molecular dynamics simulations. In(More)
Molecular dynamics simulations were carried out for the mutant oseltamivir-NA complex, to provide detailed information on the oseltamivir-resistance resulting from the H274Y mutation in neuraminidase (NA) of avian influenza H5N1 viruses. In contrast with a previous proposal, the H274Y mutation does not prevent E276 and R224 from forming the hydrophobic(More)
Aiming at understanding the molecular properties of the encapsulation of the anticancer drug gemcitabine in the single-walled carbon nanotube (SWCNT), molecular dynamics (MD) simulations were applied to the two scenarios; that of gemcitabine filling inside the SWCNT, and that of the drug in the free state. Inside the SWCNT, the cytosine ring of gemcitabine(More)
The outbreak of avian influenza A subtype H5N1 virus has raised a global concern for both animal as well as human health. Recently, drug resistance in H5N1 infections has been widely reported due to neuraminidase mutations. Consequently, the understanding of inhibitor-neuraminidase interactions at the molecular level represents the main goal of our study.(More)
To understand how antiviral drugs inhibit the replication of influenza A virus via the M2 ion channel, molecular dynamics simulations have been applied to the six possible protonation states of the M2 ion channel in free form and its complexes with two commercial drugs in a fully hydrated lipid bilayer. Among the six different states of free M2 tetramer,(More)
Molecular dynamics simulations of the drug-resistant M2 mutants, A30T, S31N, and L26I, were carried out to investigate the inhibition of M2 activity using amantadine (AMT). The closed and open channel conformations were examined via non- and triply protonated H37. For the nonprotonated state, these mutants exhibited zero water density in the conducting(More)
To reveal the source of oseltamivir-resistance in influenza (A/H5N1) mutants, the drug-target interactions at each functional group were investigated using MD/LIE simulations. Oseltamivir in the H274Y mutation primarily loses the electrostatic and the vdW interaction energies at the -NH(3)(+) and -OCHEt(2) moieties corresponding to the weakened(More)
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been(More)
The recent outbreak of the novel 2009 H1N1 influenza in humans has focused global attention on this virus, which could potentially have introduced a more dangerous pandemic of influenza flu. In the initial step of the viral attachment, hemagglutinin (HA), a viral glycoprotein surface, is responsible for the binding to the human SIA alpha2,6-linked(More)