Thanh Tu Duong

Learn More
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS(More)
Using Brownian dynamics simulations, we study the migration of long charged chains in an electrophoretic microchannel device consisting of an array of microscopic entropic traps with alternating deep regions and narrow constrictions. Such a device has been designed and fabricated recently by Han and Craighead [Science 288 (2000) 1026] for the separation of(More)
Microfluidic and lab-on-a-chip devices have attracted widespread interest in separation sciences and bioanalysis. Recent designs in microfluidic devices extend common separation concepts by exploiting new phenomena for molecular dynamics on a length scale of 10 mum and below, giving rise to novel manipulation tools and nonintuitive phenomena for(More)
Although separation of polymers based on the combination of dielectrophoretic trapping and electrophoretic forces was proposed 15 years ago, experimental proof has not yet been reported. Here, we address this problem for long DNA fragments in a simple and easy-to-fabricate microfluidic device, in which the DNA is manipulated by electrophoresis and by(More)
DNA migration in topologically structured microchannels with periodic cavities is investigated experimentally and with Brownian dynamics simulations of a simple bead-spring model. The results are in very good agreement with one another. In particular, the experimentally observed migration order of lambda - and T2-DNA molecules is reproduced by the(More)
In this paper, we report on the performance of electrophoretical separation and laser-induced fluorescence (LIF) detection of dyes and fluorescently labeled biomolecules in poly(dimethylsiloxane) (PDMS) microdevices. The dyes fluorescein and fluorescein isothiocyanate (FITC) have been separated effectively in nM concentrations. Fluorescein injections gave(More)
We have developed a microfluidic system--microPrep--for subcellular fractionation of cell homogenates based on dielectrophoretic sorting. Separation of mitochondria isolated from a human lymphoblastoid cell line was monitored by fluorescence microscopy and further characterized by western blot analysis. Robust high throughput and continuous long-term(More)
Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move(More)
We demonstrate the proof-of-principle of a new separation concept for micrometer-sized particles in a structured microfluidic device. Under the action of externally applied, periodic voltage-pulses two different species of like-charged polystyrene beads are observed to simultaneously migrate into opposite directions. Based on a theoretical model of the(More)
A new concept based on microstructuring techniques is presented to achieve size-dependent electrophoretic migration of DNA in free solution. Topographically structured microfluidic channels with periodical cavities in the range of the radius of gyration of the tested DNA molecules (, 3 mm) are produced by moulding of polydimethylsiloxane on a master wafer(More)
  • 1