Thanh Hong Nguyen

Learn More
Recent deployments of Stackelberg security games (SSG) have led to two competing approaches to handle boundedly rational human adversaries: (1) integrating models of human (adversary) decision-making into the game-theoretic algorithms , and (2) applying robust optimization techniques that avoid adversary modeling. A recent algorithm (MATCH) based on the(More)
There has been recent interest in applying Stackelberg games to infrastructure security, in which a defender must protect targets from attack by an adaptive adversary. In real-world security settings the adversaries are humans and are thus boundedly rational. Most existing approaches for computing defender strategies against boundedly rational adversaries(More)
Recent research on Green Security Games (GSG), i.e., security games for the protection of wildlife, forest and fisheries, relies on the promise of an abundance of available data in these domains to learn adversary behavioral models and determine game payoffs. This research suggests that adversary behavior models (capturing bounded rationality) can be(More)
Poaching is a serious threat to the conservation of key species and whole ecosystems. While conducting foot patrols is the most commonly used approach in many countries to prevent poaching, such patrols often do not make the best use of limited patrolling resources. To remedy this situation, prior work introduced a novel emerging application called PAWS(More)
Given the real-world applications of Stackelberg security games (SSGs), addressing uncertainties in these games is a major challenge. Unfortunately, we lack any unified computational framework for handling uncertainties in SSGs. Current state-of-the-art has provided only compartmentalized robust algorithms that handle uncertainty exclusively either in the(More)
Stackelberg security games (SSGs) have been deployed in a number of real-world domains. One key challenge in these applications is the assessment of attacker payoffs, which may not be perfectly known. Previous work has studied SSGs with uncertain payoffs modeled by interval uncertainty and provided maximin-based robust solutions. In contrast, in this work(More)
Wildlife poaching presents a serious extinction threat to many animal species. Agencies (" defenders ") focused on protecting such animals need tools that help analyze, model and predict poacher activities, so they can more effectively combat such poaching; such tools could also assist in planning effective defender patrols, building on the previous(More)
BIM (Building Information Modeling) has been recently implemented by many Architecture, Engineering, and Construction firms due to its productivity gains and long term benefits. This paper presents the development and implementation of a sustainability assessment framework for an architectural design using BIM technology in extracting data from the digital(More)
State-of-the-art applications of Stackelberg security games — including wildlife protection — offer a wealth of data, which can be used to learn the behavior of the adversary. But existing approaches either make strong assumptions about the structure of the data, or gather new data through online algorithms that are likely to play severely suboptimal(More)