Thalia A. Farazi

Learn More
FUS, EWSR1 and TAF15, constituting the FET protein family, are abundant, highly conserved RNA-binding proteins with important roles in oncogenesis and neuronal disease, yet their RNA targets and recognition elements are unknown. Using PAR-CLIP, we defined global RNA targets for all human FET proteins and two ALS-causing human FUS mutants. FET members showed(More)
MicroRNAs (miRNA) regulate many genes critical for tumorigenesis. We profiled miRNAs from 11 normal breast tissues, 17 noninvasive, 151 invasive breast carcinomas, and 6 cell lines by in-house-developed barcoded Solexa sequencing. miRNAs were organized in genomic clusters representing promoter-controlled miRNA expression and sequence families representing(More)
Protein N-myristoylation refers to the covalent attachment of myristate, a 14-carbon saturated fatty acid, to the N-terminal glycine of eukaryotic and viral proteins. N-Myristoylproteins have diverse functions and intracellular destinations. They include proteins involved in a wide variety of signal transduction cascades. In general, N-myristoylation is an(More)
Several distinct classes of small RNAs, some newly identified, have been discovered to play important regulatory roles in diverse cellular processes. These classes include siRNAs, miRNAs, rasiRNAs and piRNAs. Each class binds to distinct members of the Argonaute/Piwi protein family to form ribonucleoprotein complexes that recognize partially, or nearly(More)
Saccharomyces cerevisiae contains four known acyl-CoA synthetases (fatty acid activation proteins, Faaps). Faa1p and Faa4p activate exogenously derived fatty acids. Acyl-CoA metabolism plays a critical role in regulating protein N-myristoylation by the essential enzyme, myristoyl-CoA:protein N-myristoyltransferase (Nmt1p). In this report, we have examined(More)
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20-23 nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation,(More)
N-myristoyltransferase (Nmt) attaches myristate to the N-terminal glycine of many important eukaryotic and viral proteins. It is a target for anti-fungal and anti-viral therapy. We have determined the structure, to 2.9 Å resolution, of a ternary complex of Saccharomyces cerevisiae Nmt1p with bound myristoylCoA and peptide substrate analogs. The model(More)
The characterization of post-transcriptional gene regulation by small regulatory (20-30 nt) RNAs, particularly miRNAs and piRNAs, has become a major focus of research in recent years. A prerequisite for characterizing small RNAs is their identification and quantification across different developmental stages, and in normal and disease tissues, as well as(More)
We recently developed a protocol for the transcriptome-wide isolation of RNA recognition elements readily applicable to any protein or ribonucleoprotein complex directly contacting RNA (including RNA helicases, polymerases, or nucleases) expressed in cell culture models either naturally or ectopically (Hafner et al., 2010). Briefly, immunoprecipitation of(More)
MyristoylCoA:protein N-myristoyltransferase (Nmt) attaches myristate to the N-terminal Gly residue of proteins involved in a variety of signal transduction cascades, and other critical cellular functions. To gain insight about the structural basis of substrate recognition and catalysis, we determined the structures of a binary complex of Saccharomyces(More)