Learn More
Transmembrane pores induced by amphiphilic peptides, including melittin, are often modeled with the barrel-stave model after the alamethicin pore. We examine this assumption on melittin by using two methods, oriented circular dichroism (OCD) for detecting the orientation of melittin helix and neutron scattering for detecting transmembrane pores. OCD spectra(More)
We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio,(More)
Magainin, found in the skin of Xenopus laevis, belongs to a broad class of antimicrobial peptides which kill bacteria by permeabilizing the cytoplasmic membrane but do not lyse eukaryotic cells. The 23-residue peptide has been shown to form an amphiphilic helix when associated with membranes. However, its molecular mechanism of action has been(More)
Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,(More)
Lipid bilayers containing the antimicrobial peptide protegrin-1 (PG-1) were studied by lamellar X-ray diffraction. Previously, we have shown that the peptide exists in two distinct states when associated with lipid bilayers depending on the peptide concentration [Heller, W. T., Waring, A. J., Lehrer, R. I., and Huang, H. W. (1998) Biochemistry 37,(More)
Adsorption of amphiphilic peptides to the headgroup region of a lipid bilayer is a common mode of protein-membrane interactions. Previous studies have shown that adsorption causes membrane thinning. The degree of the thinning depends on the degree of the lateral expansion caused by the peptide adsorption. If this simple molecular mechanism is correct, the(More)
Vitamin E (alpha-tocopherol) has long been recognized as the major antioxidant in biological membranes, and yet many structurally related questions persist of how the vitamin functions. For example, the very low levels of alpha-tocopherol reported for whole cell extracts question how this molecule can successfully protect the comparatively enormous(More)
Using small-angle neutron scattering and dynamic light scattering, we have constructed partial structural phase diagrams of lipid mixtures composed of the phosphatidylcholines dimyristoyl and dihexanoyl doped with calcium ions (Ca2+) and/or the negatively charged lipid, dimyristoyl phosphatidylglycerol (DMPG). For dilute solutions (lipid concentration < or(More)
Human islet amyloid polypeptide (hIAPP), co-secreted with insulin from pancreatic beta cells, misfolds to form amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Like many amyloidogenic proteins, hIAPP is membrane-active: this may be significant in the pathogenesis of NIDDM. Non-fibrillar hIAPP induces electrical and physical breakdown in(More)
Fusion peptides mimic the membrane fusion activities of the larger viral proteins from which they derive their sequences. A possible mode of activity involves their oblique insertion into lipid bilayers, causing membrane disruption by promoting highly curved hemifusion intermediates, leading to fusion. We have determined the location and orientation of the(More)