Thórdur Oskarsson

Learn More
A search for general regulators of cancer metastasis has yielded a set of microRNAs for which expression is specifically lost as human breast cancer cells develop metastatic potential. Here we show that restoring the expression of these microRNAs in malignant cells suppresses lung and bone metastasis by human cancer cells in vivo. Of these microRNAs,(More)
Overexpression of the proto-oncogene c-myc has been implicated in the genesis of diverse human tumours. c-Myc seems to regulate diverse biological processes, but its role in tumorigenesis and normal physiology remains enigmatic. Here we report the generation of an allelic series of mice in which c-myc expression is incrementally reduced to zero. Fibroblasts(More)
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of(More)
Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are(More)
We report that breast cancer cells that infiltrate the lungs support their own metastasis-initiating ability by expressing tenascin C (TNC). We find that the expression of TNC, an extracellular matrix protein of stem cell niches, is associated with the aggressiveness of pulmonary metastasis. Cancer cell-derived TNC promotes the survival and outgrowth of(More)
Metastasis is powered by disseminated cancer cells that re-create a full-fledged tumor in unwelcoming tissues, away from the primary site. How cancer cells moving from a tumor into the circulation manage to infiltrate distant organs and initiate metastatic growth is of interest to cancer biologists and clinical oncologists alike. Recent findings have(More)
Cancer cells that leave the primary tumor can seed metastases in distant organs, and it is thought that this is a unidirectional process. Here we show that circulating tumor cells (CTCs) can also colonize their tumors of origin, in a process that we call "tumor self-seeding." Self-seeding of breast cancer, colon cancer, and melanoma tumors in mice is(More)
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response(More)
The target gene(s) required for Myc-mediated tumorigenesis are still elusive. Here we show that while endogenous c-Myc is surprisingly dispensable for skin homeostasis and TPA-induced hyperplasia, c-Myc-deficient epidermis is resistant to Ras-mediated DMBA/TPAinduced tumorigenesis. This is mechanistically linked to p21(Cip1), which is induced in tumors by(More)