Thérèse Zeegers-Huyskens

  • Citations Per Year
Learn More
Theoretical studies are performed on enflurane (CHFCl-CF(2)-O-CHF(2)) to investigate the conformational properties and vibrational spectra. Calculations are carried out at the B3LYP/6-31G(d) level along with a natural bond orbital (NBO) analysis. Experimental infrared spectra are investigated in carbon tetrachloride solution at room temperature and in argon(More)
Theoretical calculations at the MP2/6-311++G(2d,2p) level are used to analyze the interaction between HNZ (Z = O, S) and H(2)XNH(2) (X = B, Al). In the most stable conformation, the complexes are cyclic, the molecules being held together by conventional NHZ hydrogen bonds and by XHHN dihydrogen bonds. Binding energies including ZPE- and BSSE-corrections lie(More)
MP2/6-311++G(d,p) calculations have been carried out to investigate the conformation, protonation and the hydrogen bonding interactions with water of several halogenated ethers (CH(3)OCH(2)Cl, CH(2)ClOCH(2)Cl, CH(3)OCHCl(2), CHFClOCHF(2)). The optimized geometries, ν(CH) harmonic vibrational frequencies and the SAPT decomposition of the interaction energies(More)
The halogen bonded complexes between six carbonyl bases and molecular chlorine are investigated theoretically. The interaction energies calculated at the CCSD(T)/aug-cc-pVTZ level range between -1.61 and -3.50 kcal mol(-1). These energies are related to the ionization potential, proton affinity, and also to the most negative values (V(s,min)) on the(More)
The optimized geometry of isolated trimethylamine (TMA), its hydrogen bond complexes with phenol derivatives and protonated TMA is calculated at the B3LYP/6-31++G(d,p) level. A natural bond orbital (NBO) analysis on these systems is carried out at the same level of theory. In isolated TMA, one of the C-H bond in each of the three CH(3) groups is more(More)
The infrared spectra of phenol and phenol-OD are thoroughly reinvestigated, to resolve the contradictory assignment of some vibrations. The harmonic frequencies, integrated IR intensities, and potential energy distribution (PED) have been calculated by the B3LYP method with the 6-311++G(df,pd) basis set. The Fourier transform infrared (FT-IR) spectra of(More)
The weak hydrogen-bonded complexes between proton donors and the pi-cloud of indole and 1-methylindole (MI) are investigated theoretically by three different methods: DFT/B3LYP, MPW1B95, and MP2. This study addresses the question as to whether the 1:1 complex can only form between the proton and the pi-cloud of the pyrrole part of indole or if there also(More)
Theoretical calculations have been carried out using ab initio MP2 and B3LYP density functional methods to investigate the interaction between fluorinated dimethyl ethers (nF = 1-5) and water. Depending on the number of F atoms implanted on the dimethyl ethers, linear structures stabilized by intermolecular O(w)H(w)...O or CH...O(w) hydrogen bonds or closed(More)
This work deals with a theoretical study of the (CH...C)- hydrogen bonds in CH4, CH3X, and CH2X2 (X = F, Cl) complexed with their homoconjugate and heteroconjugate carbanions. The properties of the complexes are calculated with the B3LYP method using the 6-311++G(d,p) or 6-311++G(2df,2p) basis sets. The deprotonation enthalpies (DPE) of the CH bond or the(More)
The interactions between substituted vinyl alcohols and vinyl alcoholates (X = NH(2), H, F, Cl, CN) are studied at the B3LYP/6-311++G(d,p) level of theory. In a first step, the conformation of the monomers is investigated and the proton affinities (PA(A(-))) of the enolates are calculated. The enols and enolates are held together by strong (OH...O)(-)(More)