Thérèse Zeegers-Huyskens

Learn More
Theoretical studies are performed on enflurane (CHFCl-CF(2)-O-CHF(2)) to investigate the conformational properties and vibrational spectra. Calculations are carried out at the B3LYP/6-31G(d) level along with a natural bond orbital (NBO) analysis. Experimental infrared spectra are investigated in carbon tetrachloride solution at room temperature and in argon(More)
Theoretical calculations at the MP2/6-311++G(2d,2p) level are used to analyze the interaction between HNZ (Z = O, S) and H(2)XNH(2) (X = B, Al). In the most stable conformation, the complexes are cyclic, the molecules being held together by conventional NHZ hydrogen bonds and by XHHN dihydrogen bonds. Binding energies including ZPE- and BSSE-corrections lie(More)
MP2/6-311++G(d,p) calculations have been carried out to investigate the conformation, protonation and the hydrogen bonding interactions with water of several halogenated ethers (CH(3)OCH(2)Cl, CH(2)ClOCH(2)Cl, CH(3)OCHCl(2), CHFClOCHF(2)). The optimized geometries, ν(CH) harmonic vibrational frequencies and the SAPT decomposition of the interaction energies(More)
The halogen bonded complexes between six carbonyl bases and molecular chlorine are investigated theoretically. The interaction energies calculated at the CCSD(T)/aug-cc-pVTZ level range between -1.61 and -3.50 kcal mol(-1). These energies are related to the ionization potential, proton affinity, and also to the most negative values (V(s,min)) on the(More)
Ab initio MP2/aug-cc-pvDZ and density functional B3LYP calculations with the 6-311++G(d,p) basis set are performed to investigate the conformation of desflurane (CHF2OCHFCF3), its acidity/basicity and its interaction with one water molecule. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes, the(More)
The optimized geometry of isolated trimethylamine (TMA), its hydrogen bond complexes with phenol derivatives and protonated TMA is calculated at the B3LYP/6-31++G(d,p) level. A natural bond orbital (NBO) analysis on these systems is carried out at the same level of theory. In isolated TMA, one of the C-H bond in each of the three CH(3) groups is more(More)
Theoretical calculations have been carried out using ab initio MP2 and B3LYP density functional methods to investigate the interaction between fluorinated dimethyl ethers (nF = 1-5) and water. Depending on the number of F atoms implanted on the dimethyl ethers, linear structures stabilized by intermolecular O(w)H(w)...O or CH...O(w) hydrogen bonds or closed(More)
The conformation and the interaction of CHF₂OCF₂CHF₂ (desflurane II) with one water molecule is investigated theoretically using the ab initio MP2/aug-cc-pvdz and DFT-based M062X/6-311++G(d,p) methods. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes along with a natural bond orbital (NBO) analysis(More)
Theoretical investigations are carried out on the interaction between fluorinated dimethyl ethers (FDME, nF = 0-4) and the Cl atom. Short intermolecular O···Cl distances between 2.401 and 2.938 Å reveal the formation of a new class of complexes. The interaction energies calculated with the G2(MP2) method range between -9.1 (nF = 4) and -26.0 (nF = 0)(More)
The weak hydrogen-bonded complexes between proton donors and the pi-cloud of indole and 1-methylindole (MI) are investigated theoretically by three different methods: DFT/B3LYP, MPW1B95, and MP2. This study addresses the question as to whether the 1:1 complex can only form between the proton and the pi-cloud of the pyrrole part of indole or if there also(More)