Théodora S Niault

Learn More
BACKGROUND The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of(More)
The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of(More)
Some 25 years ago, Raf was discovered as the transforming principle shared by a murine sarcoma and an avian carcinoma virus. Thus, Raf and tumorigenesis have been connected from the very beginning. Ten years later, the work of many groups instated Raf as the link between Ras, the oncogene most frequently mutated in human cancers, and the mitogen-activated(More)
Listeria monocytogenes (Lm) is a foodborne pathogen that crosses the intestinal barrier upon interaction between its surface protein InlA and its species-specific host receptor E-cadherin (Ecad). Ecad, the key constituent of adherens junctions, is typically situated below tight junctions and therefore considered inaccessible from the intestinal lumen. In(More)
The activity of Raf-1 and Rok-alpha kinases is regulated by intramolecular binding of the regulatory region to the kinase domain. Autoinhibition is relieved upon binding to the small guanosine triphosphatases Ras and Rho. Downstream of Ras, Raf-1 promotes migration and tumorigenesis by antagonizing Rok-alpha, but the underlying mechanism is unknown. In this(More)
Ras-driven tumorigenesis is assumed to depend on Raf for ERK activation and proliferation; yet, an in vivo requirement for Raf as MEK/ERK activator in this setting has not been demonstrated to date. Here, we show that epidermis-restricted B-Raf ablation restrains the onset and stops the progression of established Ras-driven tumors by limiting MEK/ERK(More)
The epidermis is the outermost layer of the body and protects it from environmental insults. This crucial function is sustained by a continuous process of self-renewal involving the carefully balanced proliferation and differentiation of progenitor cells constantly replacing the mature cells at the surface of the epidermis. Genetic changes in the signalling(More)
The RAS pathway is central to epidermal homeostasis, and its activation in tumors or in Rasopathies correlates with hyperproliferation. Downstream of RAS, RAF kinases are actionable targets regulating keratinocyte turnover; however, chemical RAF inhibitors paradoxically activate the pathway, promoting epidermal proliferation. We generated mice with compound(More)
  • 1