Learn More
Metabolic regulation in mammals requires communication between multiple organs and tissues. The rise in the incidence of obesity and associated metabolic disorders, including type 2 diabetes, has renewed interest in interorgan communication. We used mouse models to explore the mechanism whereby obesity enhances pancreatic beta cell mass, pathophysiological(More)
Coordinated control of energy metabolism and glucose homeostasis requires communication between organs and tissues. We identified a neuronal pathway that participates in the cross talk between the liver and adipose tissue. By studying a mouse model, we showed that adenovirus-mediated expression of peroxisome proliferator-activated receptor (PPAR)-g2 in the(More)
Absence of or low sensitivity to photoperiod is necessary for short-day crops, such as rice and soybean, to adapt to high latitudes. Photoperiod insensitivity in soybeans is controlled by two genetic systems and involves three important maturity genes: E1, a repressor for two soybean orthologs of Arabidopsis FLOWERING LOCUS T (GmFT2a and GmFT5a), and E3 and(More)
BACKGROUND Improvement of α-tocopherol content is an important breeding aim to increase the nutritional value of crops. Several efforts have been conducted to improve the α-tocopherol content in soybean [Glycine max (L.) Merr.] through transgenic technology by overexpressing genes related to α-tocopherol biosynthesis or through changes to crop management(More)
Major components of energy homeostasis, including feeding behavior and glucose and lipid metabolism, are subject to circadian rhythms. Recent studies have suggested that dysfunctions of molecular clock genes are involved in the development of obesity and diabetes. To examine whether metabolic states per se alter the circadian clock in the central nervous(More)
During fasting, animals maintain their energy balance by shifting their energy source from carbohydrates to triglycerides. However, the trigger for this switch has not yet been entirely elucidated. Here we show that a selective hepatic vagotomy slows the speed of fat consumption by attenuating sympathetic nerve-mediated lipolysis in adipose tissue. Hepatic(More)
For examining whether dissipating excess energy in the liver is a possible therapeutic approach to high-fat diet-induced metabolic disorders, uncoupling protein-1 (UCP1) was expressed in murine liver using adenoviral vectors in mice with high-fat diet-induced diabetes and obesity, and in standard diet-fed lean mice. Once diabetes with obesity developed,(More)
Metabolic manipulation of plants to improve their nutritional quality is an important goal of plant biotechnology. Expression in rice (Oryza sativa L.) of a transgene (OASA1D) encoding a feedback-insensitive alpha subunit of rice anthranilate synthase results in the accumulation of tryptophan (Trp) in calli and leaves. It is shown here that the amount of(More)
1-Bromopropane is used widely as an alternative to ozone-depleting solvents. The neurotoxic effects of this agent have been described in humans and experimental animals. Here we investigated the underlying mechanisms of the neurotoxic effects of 1-bromopropane by examining the initial biochemical changes in the central nervous system. Four groups of 9(More)
1-Bromopropane is used as a cleaning agent or adhesive solvent in the workplace. The present study investigated the long-term effects of exposure to 1-bromopropane on biochemical components in the central nervous system (CNS) of rats. Four groups, each of nine male Wistar rats, were exposed to 200, 400, or 800 ppm 1-bromopropane or fresh air only, 8h per(More)