Learn More
Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca(2+) imaging and behavioral assays, we show that the gustatory receptor 43a (Gr43a) functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, Gr43a also functions as a fructose receptor(More)
Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The(More)
In male Drosophila, chemosensory cues control many aspects of social behavior. We found that males with a mutated Gustatory receptor 32a gene (Gr32a) show high courtship toward males and mated females, indicating that GR32a functions as a pheromone receptor for a male inhibitory pheromone. Notably, we discovered that tarsal Gr32a-expressing neurons were(More)
Evaluation of food chemicals is essential to make appropriate feeding decisions. The molecular genetic analysis of Gustatory receptor (Gr) genes and the characterization of the neural circuits that they engage has led to a broad understanding of taste perception in adult Drosophila [1, 2]. For example, eight relatively highly conserved members of the Gr(More)
—In this paper, two kinds of control strategies for a three-phase five-level double converter are described on the assumption that the converter is applied to an induction motor drive system. The purposes of the proposed control strategies are to correct voltage imbalance of the dc-bus capacitors, to keep the input power factor at near unity, and to achieve(More)
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in(More)
The detection of nutrients, both in food and within the body, is crucial for the regulation of feeding behavior, growth, and metabolism. While the molecular basis for sensing food chemicals by the taste system has been firmly linked to specific taste receptors, relatively little is known about the molecular nature of the sensors that monitor nutrients(More)
In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides l-Ala-l-Phe and l-Phe-l-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid(More)
  • 1