Tetsuya Goshima

Learn More
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in(More)
BACKGROUND There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S.(More)
In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the(More)
Since the uptake of xylose is believed to be one of the rate-limiting steps for xylose ethanol fermentation by recombinant Saccharomyces cerevisiae strains, we transformed a hxt-null strain lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) with an integrative plasmid to overexpress the genes for xylose reductase (XYL1), xylitol dehydrogenase(More)
We have identified a novel temperature-sensitive mutant of fission yeast alpha-tubulin Atb2 (atb2-983) that contains a single amino acid substitution (V260I). Atb2-983 is incorporated into the microtubules, and their overall structures are not altered noticeably, but microtubule dynamics is compromised during interphase. atb2-983 displays a high rate of(More)
The activity of transaldolase and transketolase, key enzymes in the non-oxidative pentose phosphate pathway, is rate-limiting for xylose utilization in recombinant Saccharomyces cerevisiae. Overexpression of TAL1 and TKL1, the major transaldolase and transketolase genes, increases the flux from the pentose phosphate pathway into the glycolytic pathway.(More)
The yeast Kluyveromyces marxianus is considered as a potential alternative to Saccharomyces cerevisiae in producing ethanol as a biofuel. In this study, we investigated the ethanol fermentation properties of novel K. marxianus strain DMB1, isolated from bagasse hydrolysates. This strain utilized sorbitol as well as various pentoses and hexoses as single(More)
We constructed a xylose-fermenting recombinant strain of thermotolerant yeast Kluyveromyces marxianus, DMB3-7. Both xylose consumption and ethanol production were remarkably increased in DMB3-7 compared to the control strain at 30°C. Furthermore, DMB3-7 produced ethanol from xylose at both 42°C and 45°C, above which xylose metabolic activity decreased.
We prepared eight recombinant Saccharomyces cerevisae strains, including three strains generated in this study that were produced by chromosomal integration of xylose utilization pathway enzymes genes. Among these strains, MA-R4 was the most efficient at producing ethanol from rice straw enzymatic hydrolysate, indicating that it is a superior strain for(More)
How cell morphology and the cell cycle are coordinately regulated is a fundamental subject in cell biology. In fission yeast, 2 germinal center kinases (GCKs), Sid1 and Nak1, play an essential role in septation/cytokinesis and cell separation/cell polarity control, respectively, as components of the septation initiation network (SIN) and the morphogenesis(More)