Tetsuya Aruga

Learn More
The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and(More)
Hydrogen bonds are the path through which protons and hydrogen atoms can be transferred between molecules. The relay mechanism, in which H-atom transfer occurs in a sequential fashion along hydrogen bonds, plays an essential role in many functional compounds. Here we use the scanning tunnelling microscope to construct and operate a test-bed for real-space(More)
We report a novel structure of water aggregate by means of scanning tunneling microscopy. Water molecules are self-assembled into one-dimensional chains on Cu(110) at 78 K. The chain exhibits a zigzag structure with a period of 7.2 A and grows to a length of approximately 1000 A. We propose that water hexamers are arranged alternately along the chain.(More)
Water clusters are assembled and imaged on Cu(110) by using a scanning tunneling microscope. Water molecules are arranged along the Cu row to form "ferroelectric" zigzag chains of trimer to hexamer. The trimer prefers the chain form to a cyclic one in spite of the reduced number of hydrogen bonds, highlighting the crucial role of the water-substrate(More)
The dynamics of water dimers was investigated at the single-molecule level by using a scanning tunneling microscope. The two molecules in a water dimer, bound on a Cu(110) surface at 6 K, were observed to exchange their roles as hydrogen-bond donor and acceptor via hydrogen-bond rearrangement. The interchange rate is approximately 60 times higher for (H2O)2(More)
Using low-temperature scanning tunneling microscopy (STM), the adsorption and reaction of hydrogen sulfide (H2S) and its fragments (SH and S) on Cu(110) are investigated at 5 K. H2S adsorbs molecularly on the surface on top of a Cu atom. With voltage pulses of STM, it is possible to induce sequential dehydrogenation of H2S to SH and S. We found two kinds of(More)
For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and(More)
Peierls-type instability and structural phase transition are shown to occur on the surface of a normal metal. An In overlayer on Cu(001) undergoes a reversible transition at approximately 350 K. Scanning tunneling microscopy of the low-temperature, reduced-symmetry phase indicates a strong periodic lattice distortion (PLD). Angle-resolved photoemission of(More)
Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in(More)
We have determined the atomic structure of the Pb/Ge(111)-β-(√3 × √3)R30° surface, which was shown to exhibit a large Rashba spin splitting in a metallic surface state by dynamical low-energy electron diffraction analysis. The Pb coverage for the optimized atomic structure is 4/3 with one Pb atom located at every third H(3) site of the bulk-truncated(More)