Tetsuji Moriyama

Learn More
Microlocalization of mRNA coding for the guanylyl cyclase-coupled atrial natriuretic factor (ANF) receptor was carried out in the rat kidney. We used a combination of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, and vasa recta bundles. Relative quantitation of the resulting(More)
Renal medullary cells are normally exposed to high extracellular NaCl as part of the urinary concentrating mechanism. They react to this stress by accumulating sorbitol and other organic osmolytes. PAP-HT25, a line of epithelial cells derived from rabbit renal inner medulla, expresses this response. In hypertonic medium, these cells accumulate large amounts(More)
We have developed a procedure to detect specific mRNAs in single renal nephron segments. This approach combines microdissection, reverse transcription (RT) of the target mRNA, and amplification of the resulting cDNA using the polymerase chain reaction (PCR). After microdissection, the sample is placed in a tube where it is permeabilized and where all(More)
In order to enhance the internalization of exogenous gene and add cell specificity to non-viral vectors, receptor-binding elements have been widely utilized to mimic the virus infection. Herein, for the purpose of intensifying the effects of the ligand on gene delivery, dual receptor-binding elements, transferrin (Tf) and transforming growth factor alpha(More)
Renal medullary cells contain high concentrations of sorbitol, inositol, glycerophosphorylcholine (GPC), and betaine, which balance the variably high osmolality of extracellular NaCl. We found that PAP-HT25 (rabbit renal medullary) cells in tissue culture increase their content of all four when medium osmolality is increased by adding NaCl and urea.(More)
The small GTPase Ran plays important roles in multiple aspects of cellular function. Maximal RanGAP activity is achieved with the aid of RanBP1 and/or presumably of RanBP2. Here, we show that RanBP1-knockout mice are unexpectedly viable, and exhibit male infertility due to a spermatogenesis arrest, presumably caused by down-regulation of RanBP2 during(More)
Recent studies have demonstrated that 3-deoxy-3-fluoro-D-glucose (3-FG) is metabolized to 3-deoxy-3-fluoro-D-sorbitol (3-FS), via aldose reductase, and 3-deoxy-3-fluoro-D-fructose (3-FF), via the sorbitol dehydrogenase reaction with 3-FS, in rat cerebral tissue (Kwee, I. L., Nakada, T., and Card, P. J. (1987) J. Neurochem. 49, 428-433). However, the(More)
We recently demonstrated that the expression of the importin α subtype is switched from α2 to α1 during neural differentiation in mouse embryonic stem cells (ESCs) and that this switching has a major impact on cell differentiation. In this study, we report a cell-fate determination mechanism in which importin α2 negatively regulates the nuclear import of(More)
Oct4 is a member of the POU family of transcription factors and plays a critical role in both maintenance of the undifferentiated state of embryonic stem (ES) cells and in the reprogramming of somatic cells to induced pluripotent stem cells. Oct4 is imported into the nucleus where it functions as a transcription factor; however, the spatiotemporal dynamic(More)
Importin α1 is involved in nuclear import as a receptor for proteins with a classical nuclear localization signal (cNLS). Here, we report that importin α1 is localized to the cell surface in several cancer cell lines and detected in their cultured medium. We also found that exogenously added importin α1 is associated with the cell membrane via interaction(More)