Tessa E. Pronk

Learn More
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e.,(More)
The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the(More)
The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa −/− p53 +/− primary(More)
We present a formal analysis of ribosome kinetics using pro-babilistic model checking and the tool Prism. We compute different parameters of the model, like probabilities of translation errors and average insertion times per codon. The model predicts strong correlation to the quotient of the concentrations of the so-called cognate and near-cognate tRNAs, in(More)
The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr(More)
We present a biological case study of codon bias with the probabilistic model checker PRISM with which we perform a quantitative analysis of expression speeds of genes. The variability in this setting concerns the matching of codons and anticodons. We distinguish between iso-acceptance (one codon matches exactly one anticodon) and wobble matching (multiple(More)
In bacteria, gene regulation is one of the fundamental characteristics of survival, colonization and pathogenesis. Operons play a key role in regulating expression of diverse genes involved in metabolism and virulence. However, operon structures in pathogenic bacteria have been determined only by in silico approaches that are dependent on factors such as(More)
For embedded systems as well as for biological cell systems, design is a feature that defines their identity. The assembly of different components in designs of both systems can vary widely. Given the similarities between computers and cellular systems, methods and models of computation from the domain of computer systems engineering might be applied to(More)
In this paper, we discuss the potential for the use of engineering methods that were originally developed for the design of embedded computer systems, to analyse biological cell systems. For embedded systems as well as for biological cell systems, design is a feature that defines their identity. The assembly of different components in designs of both(More)
While reusing research data has evident benefits for the scientific community as a whole, decisions to archive and share these data are primarily made by individual researchers. In this paper we analyse, within a game theoretical framework, how sharing and reuse of research data affect individuals who share or do not share their datasets. We construct a(More)