Tessa E. F. Quax

Learn More
The redundancy of the genetic code implies that most amino acids are encoded by multiple synonymous codons. In all domains of life, a biased frequency of synonymous codons is observed at the genome level, in functionally related genes (e.g., in operons), and within single genes. Other codon bias variants include biased codon pairs and codon co-occurrence.(More)
Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in Archaea. It is a lytic virus that exploits a unique egress(More)
Little is known about the infection cycles of viruses infecting cells from Archaea, the third domain of life. Here, we demonstrate that the virions of the archaeal Sulfolobus islandicus rod-shaped virus 2 (SIRV2) are released from the host cell through a mechanism, involving the formation of specific cellular structures. Large pyramidal virus-induced(More)
Clustering of functionally related genes in operons allows for coregulated gene expression in prokaryotes. This is advantageous when equal amounts of gene products are required. Production of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms to generate subunits in appropriate relative quantities. Using comparative genomic(More)
Some viruses of Archaea use an unusual egress mechanism that involves the formation of virus-associated pyramids (VAPs) on the host cell surface. At the end of the infection cycle, these structures open outward and create apertures through which mature virions escape from the cell. Here we describe in detail the structure and composition of VAPs formed by(More)
A decisive step in a virus infection cycle is the recognition of a specific receptor present on the host cell surface, subsequently leading to the delivery of the viral genome into the cell interior. Until now, the early stages of infection have not been thoroughly investigated for any virus infecting hyperthermophilic archaea. Here, we present the first(More)
Archaeal host cells infected by Sulfolobus turreted icosahedral virus (STIV) and Sulfolobus islandicus rod-shaped virus 2 (SIRV2) produce unusual pyramid-like structures on the cell surface prior to virus-induced cell lysis. This viral lysis process is distinct from known viral lysis processes associated with bacterial or eukaryal viruses. The STIV protein(More)
Recently a unique mechanism of virion release was discovered in Archaea, different from lysis and egress systems of bacterial and eukaryotic viruses. It involves formation of pyramidal structures on the host cell surface that rupture the S-layer and by opening outwards, create apertures through which mature virions escape the cell. Here we present results(More)
Virion release from the host cell is the final and essential step for completion of the viral life cycle and spread of virions in the environment. Although for eukaryotic and bacterial viruses the egress mechanisms are reasonably well understood, this subject has not been studied in detail for archaeal viruses until recently. Here we summarize available(More)
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane,(More)