Learn More
— The self-assembling of three-dimensional (3-D) MEMS from polysilicon surface micromachined part is very attractive. To avoid risky external manipulation, the practical use of integrated actuator to perform the assembling task is required. To that goal, this paper presents detailed characteristics of the electrostatic surface micromachined scratch drive(More)
A combined atomic force and scanning electrochemical microscope probe is presented. The probe is electrically insulated except at the very apex of the tip, which has a radius of curvature in the range of 10-15 nm. Steady-state cyclic voltammetry measurements for the reduction of Ru(NH3)6Cl3 and feedback experiments showed a distinct and reproducible(More)
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which(More)
The performance of microfabricated piezoresistive cantilever array sensors has been evaluated using various vapors of volatile organic compounds including alkanes with different chain length from 5 (n-pentane) to 14 (n-tetradecane). We demonstrate that piezoresistive microcantilever array sensors have the selectivity of discriminating individual alkanes in(More)
The quartz tuning fork based probe {e.g., Akiyama et al. [Appl. Surf. Sci. 210, 18 (2003)]}, termed "A-Probe," is a self-sensing and self-actuating (exciting) probe for dynamic mode atomic force microscope (AFM) operation. It is an oscillatory force sensor consisting of the two discrete resonators. This paper presents the investigations on an improved(More)
Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS(2), template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted(More)
We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS) chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS(More)
With their capability for real-time and label-free detection of targets ranging from gases to biological molecules, nanomechanical sensors are expected to contribute to various fields, such as medicine, security, and environmental science. For practical applications, one of the major issues of nanomechanical sensors is the difficulty of coating receptor(More)
For many diseases, where a particular organ is affected, chemical by-products can be found in the patient's exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients' exhaled breath samples by an electronic nose(More)
We have recently demonstrated that indentation-type atomic force microscopy (IT-AFM) is capable of detecting early onset osteoarthritis (OA) (Stolz, 2009). This study was based on biopsies, using a desk-top commercial atomic force microscope (AFM). However, cartilage analysis in the knee joints needs to be non-destructive to avoid new seeding points for OA(More)