Terumi Saito

Learn More
Polyhydroxybutyrate is a microbial polyester that can be produced from renewable resources, and is degraded by the enzyme polyhydroxybutyrate depolymerase. The crystal structures of polyhydroxybutyrate depolymerase from Penicillium funiculosum and its S39 A mutant complexed with the methyl ester of a trimer substrate of (R)-3-hydroxybutyrate have been(More)
Two systems, one using an (R)-(-)-3-hydroxybutyrate dehydrogenase (BDH) null mutant of Ralstonia eutropha and the other using a recombinant Escherichia coli strain containing a synthetic poly[(R)-(-)-3-hydroxybutyrate] (PHB) operon and an extracellular PHB depolymerase gene, were used for the fermentative production of (R)-(-)-3-hydroxybutyrate (3HB). The(More)
β-Ketothiolase from Zoogloea ramigera I-16-M was purified 140-fold to electrophoretic homogeneity. The bacterium appeared to contain a single isoenzyme of β-ketothiolase with a molecular weight of 190000, as determined by Sephadex G-200 gel filtration. The monomer molecular weight was 44000, as estimated by polyacrylamide gel electrophoresis in the presence(More)
D(-)-3-hydroxybutyrate dehydrogenase (BDH; EC 1.1.1.30) from a poly(D(-)-3-hydroxybutyrate) (PHB) degrading bacterium, Acidovorax sp. SA1, was purified using Toyopearl DEAE-650M, red-Sepharose CL-4B, and Q Sepharose FF. The molecular mass of the enzyme was estimated as 27 kDa by SDS-PAGE and 110 kDa by gel filtration. The gene encoding BDH was cloned and(More)
Poly(3-hydroxybutyrate) (PHB) is synthesized from 3-hydroxybutyryl-CoA by polyhydroxyalkanoate synthase and hydrolyzed by PHB depolymerase. In this study, we focused on the reverse reaction of polyhydroxyalkanoate synthase, and propose the possibility that PHB can be degraded through a novel process, that is thiolysis of PHB with CoASH. Polyhydroxyalkanoate(More)
Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from (14)C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and(More)
Two D-(-)-3-hydroxybutyrate (3HB) dehydrogenases, BDH1 and BDH2, were isolated and purified from a poly(3-hydroxybutyrate) (PHB)-degradable bacterium, Ralstonia pickettii T1. BDH1 activity increased in R. pickettii T1 cells grown on several organic acids as a carbon source but not on 3HB, whereas BDH2 activity markedly increased in the same cells grown on(More)
Poly(3-hydroxybutyrate) (PHB) depolymerase from Alcaligenes faecalis T1 is composed of three domains: the catalytic (C) domain, the fibronectin type III-like (F) domain, and the substrate-binding (S) domain. We constructed domain deletion, inversion, chimera, and extra-F-domain mutants and examined their enzyme activity and PHB-binding ability. In addition,(More)
The extracellular poly(3-hydroxybutyrate) depolymerase from Ralstonia pickettii T1 has been purified, its function and character investigated in detail, and its gene cloned and sequenced. However, the mechanism by which this enzyme is secreted has not been elucidated. A mutant unable to degrade poly(3-hydroxybutyrate), N17, was obtained with the random(More)
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous(More)