Learn More
BACKGROUND The amplification of oncogenes in cancer cells is often mediated by paired acentric chromatin bodies called double minute chromosomes (DMs), which can accumulate to a high copy number because of their autonomous replication during the DNA synthesis phase of the cell cycle and their subsequent uneven distribution to daughter cells during mitosis.(More)
Epstein-Barr virus (EBV)-encoded RNA 1 (EBER1) and EBER2 are untranslated RNAs and the most abundant viral transcripts in latently EBV-infected cells. We previously reported that EBERs play a critical role in efficient EBV-induced growth transformation of primary B cells. To investigate whether EBER1 and EBER2 have distinct roles in B-cell growth(More)
Epstein-Barr virus (EBV) replication proteins are transported into the nucleus to synthesize viral genomes. We here report molecular mechanisms for nuclear transport of EBV DNA polymerase. The EBV DNA polymerase catalytic subunit BALF5 was found to accumulate in the cytoplasm when expressed alone, while the EBV DNA polymerase processivity factor BMRF1 moved(More)
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are nonpolyadenylated, untranslated RNAs, exist most abundantly in latently EBV-infected cells, and are expected to show secondary structures with many short stem-loops. Retinoic acid-inducible gene I (RIG-I) is a cytosolic protein that detects viral double-stranded RNA (dsRNA) inside the cell and(More)
It was demonstrated that Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) were nonessential for B-lymphocyte growth transformation. We revisited this issue by producing a large quantity of EBER-deleted EBV by using an Akata cell system. Although the EBER-deleted virus efficiently infected B lymphocytes, its 50% transforming dose was approximately(More)
In eukaryotes, many latent viruses replicate as extrachromosomal molecules, called episomes, and efficiently segregate to daughter cells by noncovalently attaching to mitotic chromosomes. To understand the mechanism governing the processes, we analyzed the detailed subcellular localization of Epstein-Barr virus (EBV) genomes and a viral protein EBNA1, a(More)
Epstein-Barr virus (EBV) infection converts primary human B cells into continuously proliferating lymphoblastoid cell lines (LCLs). To examine the role of EBV nuclear antigen (EBNA) 3C in the proliferation of LCLs, we established LCLs infected with an EBV recombinant that expresses EBNA3C with a C-terminal fusion to a 4-hydroxytamoxifen (4HT)-dependent(More)
Amplified genes are frequently localized on extrachromosomal double minutes (DMs) or in chromosomal homogeneously staining regions (HSRs). We previously showed that a plasmid bearing a mammalian replication initiation region could efficiently generate DMs and HSRs after transfection into human tumor cell lines. The Breakage-Fusion-Bridge (BFB) cycle model,(More)
The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To(More)
Epstein-Barr virus (EBV), a human oncogenic herpesvirus that establishes a lifelong latent infection in the host, occasionally enters lytic infection to produce progeny viruses. The EBV oncogene latent membrane protein 1 (LMP1), which is expressed in both latent and lytic infection, constitutively activates the canonical NF-κB (p65) pathway. Such(More)