Learn More
BACKGROUND The amplification of oncogenes in cancer cells is often mediated by paired acentric chromatin bodies called double minute chromosomes (DMs), which can accumulate to a high copy number because of their autonomous replication during the DNA synthesis phase of the cell cycle and their subsequent uneven distribution to daughter cells during mitosis.(More)
Epstein-Barr virus (EBV)-encoded RNA 1 (EBER1) and EBER2 are untranslated RNAs and the most abundant viral transcripts in latently EBV-infected cells. We previously reported that EBERs play a critical role in efficient EBV-induced growth transformation of primary B cells. To investigate whether EBER1 and EBER2 have distinct roles in B-cell growth(More)
Epstein-Barr virus (EBV) infection converts primary human B cells into continuously proliferating lymphoblastoid cell lines (LCLs). To examine the role of EBV nuclear antigen (EBNA) 3C in the proliferation of LCLs, we established LCLs infected with an EBV recombinant that expresses EBNA3C with a C-terminal fusion to a 4-hydroxytamoxifen (4HT)-dependent(More)
BACKGROUND Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames(More)
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV[+]DLBCL-E) is classified as a subtype of DLBCL. Until now, its molecular pathogenesis has remained unknown. To identify pathways characteristic of EBV(+)DLBCL-E, gene expression profiling of five EBV(+)DLBCL-E and seven EBV-negative DLBCL (EBV[-]DLBCL) cases was(More)
Epstein-Barr virus (EBV) is associated with several malignancies, including Burkitt lymphoma and nasopharyngeal carcinoma. To overcome such disorders, understanding the molecular mechanisms of the EBV replication is important. The EBV DNA polymerase (Pol) is one of the essential factors for viral lytic DNA replication. Although it is well known that its(More)
A group of repetitive sequences, known as the Family of Repeats (FR), is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial(More)
  • 1