Feng-Wu Liu1
Brian O. Bachmann1
Jonas Nascimento Conde1
Brianna S. Siegel1
Learn More
Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with(More)
Bacterial chemoreceptors signal across the membrane by conformational changes that traverse a four-helix transmembrane domain. High-resolution structures are available for the chemoreceptor periplasmic domain and part of the cytoplasmic domain but not for the transmembrane domain. Thus, we constructed molecular models of the transmembrane domains of(More)
A series of novel derivatives of the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide were synthesized as potential agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma). Nonpolar and aromatic substitutions on the benzylidene ring as well as retention of the carboxylic acid side chain were required for optimal activity.(More)
Numerous techniques have been used to elucidate the structural basis for interaction of cholecystokinin (CCK)-related peptides with their hormone-binding receptor, the CCK-A receptor (CCK-AR), including structure-activity relationship studies, site-directed mutagenesis, photoaffinity-labeling, and solution NMR analysis of both CCK peptide ligands and(More)
RNA aptamers are synthetic oligonucleotide-based affinity molecules that utilize unique three-dimensional structures for their affinity and specificity to a target such as a protein. They hold the promise of numerous advantages over biologically produced antibodies; however, the binding affinity and specificity of RNA aptamers are often insufficient for(More)
Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to(More)
Computer-aided drug design (CADD) is an exciting and diverse discipline where various aspects of applied and basic research merge and stimulate each other. The latest technological advances (QSAR/QSPR, structure-based design, combinatorial library design, cheminformatics & bioinformatics); the growing number of chemical and biological databases; and an(More)
  • 1