Learn More
Sodium channels initiate the electrical cascade responsible for cardiac rhythm, and certain life-threatening arrhythmias arise from Na(+) channel dysfunction. We propose a novel mechanism for modulation of Na(+) channel function whereby calcium ions bind directly to the human cardiac Na(+) channel (hH1) via an EF-hand motif in the C-terminal domain. A(More)
Mechanisms of ligand binding and activation of G protein-coupled receptors are particularly important, due to their ubiquitous expression and potential as drug targets. Molecular interactions between ligands and these receptors are best defined for small molecule ligands that bind within the transmembrane helices. Extracellular domains seem to be more(More)
Affinity labeling is a powerful tool to establish spatial approximations between photolabile residues within a ligand and its receptor. Here, we have utilized a cholecystokinin (CCK) analogue with a photolabile benzoylphenylalanine (Bpa) sited in position 24, adjacent to the pharmacophoric domain of this hormone (positions 27-33). This probe was a fully(More)
We have developed a biologically active analogue of cholecystokinin (CCK) that incorporates a photolabile benzoylphenylalanine (Bpa) moiety in the middle of its pharmacophoric domain, which efficiently establishes a covalent bond with an interacting domain of the CCK receptor. This probe incorporated L-Bpa in the position of Gly29 of the well characterized,(More)
Membrane receptor dimerization is a well-established event for initiation of signaling at growth factor receptors and has been postulated to exist for G protein-coupled receptors, based on correction of nonfunctional truncated, mutant, or chimeric constructs by coexpression of appropriate normal complementary receptor domains. In this work, we have directly(More)
The high affinity energetics in the streptavidin-biotin system provide an excellent model system for studying how proteins balance enthalpic and entropic components to generate an impressive overall free energy for ligand binding. We review here concerted site-directed mutagenesis, biophysical, and computational studies of aromatic and hydrogen bonding(More)
We report here new computational tools and strategies to efficiently generate three-dimensional models for oligomeric biomolecular complexes in cases where there is limited experimental restraint data to guide the docking calculations. Our computational tools are designed to rapidly and exhaustively enumerate all geometrically possible docking poses for an(More)
BACKGROUND Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of(More)
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate(More)