Learn More
The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis(More)
The Ribosomal Database Project-II (RDP-II) pro-vides data, tools and services related to ribosomal RNA sequences to the research community. Through its website (http://rdp.cme.msu.edu), RDP-II offers aligned and annotated rRNA sequence data, analysis services, and phylogenetic inferences (trees) derived from these data. RDP-II release 8.1 contains 16 277(More)
The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying(More)
To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed(More)
Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA(More)
Terminal restriction fragment length polymorphism is a recent molecular approach that can assess subtle genetic differences between strains as well as provide insight into the structure and function of microbial communities. The technique has both high sensitivity and throughput making it ideal for comparative analyses.
Until the discovery of catalytic RNAs, first the self-splicing intron inTetrahymena and then the bacterial RNAse P, cellular enzymes had always seemed to be protein in nature. The recognition that RNA can catalytically make and break phosphodiester bonds simplifies some of the assumptions required of a rudimentary self-replicating entity. Available(More)
  • 1