Learn More
BACKGROUND Current treatment for Gaucher's disease involves administration of intravenous glucocerebrosidase to degrade glucocerebroside stored in lysosomes. Lowering the rate of biosynthesis of glucocerebroside should decrease accumulation of this substrate. We investigated the safety and efficacy of OGT 918 (N-butyldeoxynojirimycin), an inhibitor of(More)
Summary: It has been shown that treatment with miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) improves key clinical features of type I Gaucher disease after 1 year of treatment. This study reports longer-term efficacy and safety data. Patients who had completed 12 months of treatment with open-label miglustat (100-300 mg three times daily) were(More)
Sandhoff disease is a neurodegenerative disorder resulting from the autosomal recessive inheritance of mutations in the HEXB gene, which encodes the beta-subunit of beta-hexosaminidase. GM2 ganglioside fails to be degraded and accumulates within lysosomes in cells of the periphery and the central nervous system (CNS). There are currently no therapies for(More)
The glycosphingolipid (GSL) lysosomal storage diseases result from the inheritance of defects in the genes encoding the enzymes required for catabolism of GSLs within lysosomes. A strategy for the treatment of these diseases, based on an inhibitor of GSL biosynthesis N-butyldeoxynojirimycin, was evaluated in a mouse model of Tay-Sachs disease. When(More)
Mouse models of the GM2 gangliosidoses [Tay-Sachs, late onset Tay-Sachs (LOTS), Sandhoff] and GM1 gangliosidosis have been studied to determine whether there is a common neuro-inflammatory component to these disorders. During the disease course, we have: (i) examined the expression of a number of inflammatory markers in the CNS, including MHC class II,(More)
Many neurodegenerative diseases are characterized by the accumulation of undegradable molecules in cells or at extracellular sites in the brain. One such family of diseases is the lysosomal storage disorders, which result from defects in various aspects of lysosomal function. Until recently, there was little prospect of treating storage diseases involving(More)
The imino sugar deoxynojirimycin and its alkylated derivatives are inhibitors of the N-linked oligosaccharide processing enzymes alpha-glucosidase I and II. These compounds are glucose analogues and have the potential to inhibit both glucosidases and glucosyltransferases. However, to date there has been no report of deoxynojirimycin or similar analogues(More)
Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not(More)
The GM2 gangliosidoses are caused by incomplete catabolism of GM2 ganglioside in the lysosome, leading to progressive storage and a neurodegenerative clinical course. An inflammatory response (microglial activation, macrophage infiltration, oxidative damage) has been found to be a consequence of GM2 storage in the brain, although it remains unclear whether(More)
Sandhoff disease is a lysosomal storage disorder characterized by G(M2) ganglioside accumulation in the central nervous system (CNS) and periphery. It results from mutations in the HEXB gene, causing a deficiency in beta-hexosaminidase. Bone marrow transplantation (BMT), which augments enzyme levels, and substrate deprivation (using the glycosphingolipid(More)