Terry Ann Krulwich

Learn More
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH(More)
Alkaliphilic Bacillus species provide experimental opportunities for examination of physiological processes under conditions in which the stress of the extreme environment brings issues of general biological importance into special focus. The alkaliphile, like many other cells, uses Na+/H+ antiporters in pH regulation, but its array of these porters, and(More)
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights(More)
The effect of external pH on growth of alkaliphilic Bacillus firmus OF4 was studied in steady-state, pH-controlled cultures at various pH values. Generation times of 54 and 38 min were observed at external pH values of 7.5 and 10.6, respectively. At more alkaline pH values, generation times increased, reaching 690 min at pH 11.4; this was approximately the(More)
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH(More)
Deletion of the tetA(L) chromosomal region of Bacillus subtilis in a strain designated JC112 increased the strain's sensitivity to low tetracycline concentrations. It also resulted in phenotypic changes that correlate with the previously found role of TetA(L) in mediating electrogenic NA+/H+ antiport. Growth of JC112 was impaired relative to that of the(More)
The membrane lipids from two obligately and two facultatively alkalophilic strains of Bacillus spp. were characterized in a comparative study that included B. subtilis. Preparations of membrane lipids were made from pH 10.5-grown cells of all of the alkalophiles and from pH 7.5- or 7.0-grown cells of the two facultative strains and B. subtilis. The two(More)
Mrp systems are a novel and broadly distributed type of monovalent cation/proton antiporter of bacteria and archaea. Monovalent cation/proton antiporters are membrane transport proteins that catalyze efflux of cytoplasmic sodium, potassium or lithium ions in exchange for external hydrogen ions (protons). Other known monovalent cation antiporters are single(More)
In extreme alkaliphiles, Na(+)/H(+) antiporters play a central role in the Na(+) cycle that supports pH homeostasis, Na(+) resistance, solute uptake, and motility. Properties of individual antiporters have only been examined in extremely alkaliphilic soil Bacillus spp., whereas the most alkaline natural habitats usually couple high pH with high salinity.(More)
We have cloned and sequenced the DNA of alkaliphilic Bacillus firmus OF4 encompassing the cta operon that encodes a pH-regulated cytochrome caa3 oxidase. The gene organization is identical with that of the homologous Bacillus subtilis caa3 oxidase locus (van der Oost, J., von Wachenfeld, C., Hederstedt, L. & Saraste, M. (1991) Mol. Microbiol. 5, 2063-2072).(More)