Learn More
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights(More)
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH(More)
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH(More)
A Na(+) cycle plays a central role in the remarkable capacity of aerobic, extremely alkaliphilic Bacillus species for pH homeostasis. The capacity for pH homeostasis, in turn, appears to set the upper pH limit for growth. One limb of the alkaliphile Na(+) cycle consists of Na(+)/H(+) antiporters that achieve net H(+) accumulation that is coupled to Na(+)(More)
Mrp systems are a novel and broadly distributed type of monovalent cation/proton antiporter of bacteria and archaea. Monovalent cation/proton antiporters are membrane transport proteins that catalyze efflux of cytoplasmic sodium, potassium or lithium ions in exchange for external hydrogen ions (protons). Other known monovalent cation antiporters are single(More)
Oxidative phosphorylation by extremely alkaliphilic Bacillus species violates two major predictions of the chemiosmotic hypothesis: the magnitude of the chemiosmotic driving force, the delta p (electrochemical proton gradient), is too low to account for the phosphorylation potentials observed during growth at pH 10.5 without using a much higher H+/ATP(More)
In extreme alkaliphiles, Na(+)/H(+) antiporters play a central role in the Na(+) cycle that supports pH homeostasis, Na(+) resistance, solute uptake, and motility. Properties of individual antiporters have only been examined in extremely alkaliphilic soil Bacillus spp., whereas the most alkaline natural habitats usually couple high pH with high salinity.(More)
The effect of external pH on growth of alkaliphilic Bacillus firmus OF4 was studied in steady-state, pH-controlled cultures at various pH values. Generation times of 54 and 38 min were observed at external pH values of 7.5 and 10.6, respectively. At more alkaline pH values, generation times increased, reaching 690 min at pH 11.4; this was approximately the(More)
Attempts to identify members of the antiporter complement of the alkali- and saline-adapted soda lake alkaliphile Alkalimonas amylolytica N10 have used screens of DNA libraries in antiporter-deficient Escherichia coli KNabc. Earlier screens used Na(+) or Li(+) for selection but only identified one NhaD-type antiporter whose properties were inconsistent with(More)