Learn More
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH(More)
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights(More)
The effect of external pH on growth of alkaliphilic Bacillus firmus OF4 was studied in steady-state, pH-controlled cultures at various pH values. Generation times of 54 and 38 min were observed at external pH values of 7.5 and 10.6, respectively. At more alkaline pH values, generation times increased, reaching 690 min at pH 11.4; this was approximately the(More)
Alkaliphilic Bacillus species provide experimental opportunities for examination of physiological processes under conditions in which the stress of the extreme environment brings issues of general biological importance into special focus. The alkaliphile, like many other cells, uses Na+/H+ antiporters in pH regulation, but its array of these porters, and(More)
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH(More)
Deletion of the tetA(L) chromosomal region of Bacillus subtilis in a strain designated JC112 increased the strain's sensitivity to low tetracycline concentrations. It also resulted in phenotypic changes that correlate with the previously found role of TetA(L) in mediating electrogenic NA+/H+ antiport. Growth of JC112 was impaired relative to that of the(More)
The membrane lipids from two obligately and two facultatively alkalophilic strains of Bacillus spp. were characterized in a comparative study that included B. subtilis. Preparations of membrane lipids were made from pH 10.5-grown cells of all of the alkalophiles and from pH 7.5- or 7.0-grown cells of the two facultative strains and B. subtilis. The two(More)
Application of protoplast transformation and single- and double-crossover mutagenesis protocols to alkaliphilic Bacillus firmus OF4811M (an auxotrophic strain of B. firmus OF4) facilitated the extension of the sequence of the previously cloned nhaC gene, which encodes an Na+/H+ antiporter, and the surrounding region. The nhaC gene is part of a likely 2-gene(More)
The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance(More)
The chromosomal tetB(L) gene of Bacillus subtilis encodes a transporter that catalyzes Na+/H+ antiport even more actively than tetracycline/H+ antiport, as shown by assays of membrane antiporter activity upon transformation of Na+/H+ antiporter-deficient Escherichia coli with the cloned gene; the transformation results in a substantial increase in Na+(More)