Learn More
Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular(More)
The analgesic acetaminophen causes a potentially fatal, hepatic centrilobular necrosis when taken in overdose. The initial phases of toxicity were described in Dr. Gillette's laboratory in the 1970s. These findings indicated that acetaminophen was metabolically activated by cytochrome P450 enzymes to a reactive metabolite that depleted glutathione (GSH) and(More)
The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites(More)
The serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) appears dependent upon systemic metabolism because direct injection of MDMA into the brain fails to reproduce the neurotoxicity. MDMA is demethylenated to the catechol metabolite N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA). Thioether (glutathione and N-acetylcysteine)(More)
2,3,5-Tris(glutathion-S-yl)-hydroquinone (TGHQ), a metabolite of hydroquinone, is toxic to renal proximal tubule epithelial cells. TGHQ retains the ability to redox cycle and create an oxidative stress. To assist in elucidating the contribution of reactive oxygen species (ROS) to TGHQ-induced toxicity, we determined whether the antioxidant,(More)
3,4-(+/-)-Methylenedioxyamphetamine (MDA) and 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) are serotonergic neurotoxicants. However, when injected directly into brain, MDA and MDMA are not neurotoxic, suggesting that systemic metabolism plays an important role in the development of neurotoxicity. The nature of the metabolite(s) responsible for MDA- and(More)
Quinones are ubiquitous in nature and constitute an important class of naturally occurring compounds found in plants, fungi and bacteria. Human exposure to quinones therefore occurs via the diet, but also clinically or via airborne pollutants. For example, the quinones of polycyclic aromatic hydrocarbons are prevalent as environmental contaminants and(More)
The metabolism and kinetics of 14C-labeled theophylline have been studied after intravenous doses of 100 mg to healthy subjects, keeping to their usual diets after 7 days of abstention from methylxanthine-containing foods and beverages and again after such abstention while taking caffeine and theophylline in tablet form. The metabolism of oral(More)
Metabolism of benzene is required to produce the classical hematological disorders associated with its exposure. After coadministration of hydroquinone (0.9 mmol/kg, ip) and phenol (1.1 mmol/kg, ip) to male Sprague-Dawley rats and DBA/2 mice, 2-(glutathion-S-yl)hydroquinone was identified in the bone marrow of both species.(More)