Tero Huhtiniemi

Learn More
The lack of substrate-bound crystal structures of SIRT1 and SIRT2 complicates the drug design for these targets. In this work, we aim to study whether SIRT3 could serve as a target structure in the design of substrate based pseudopeptidic inhibitors of SIRT1 and SIRT2. We created a binding hypothesis for pseudopeptidic inhibitors, synthesized a series of(More)
Sirtuins are NAD-dependent histone deacetylases, which cleave the acetyl-group from acetylated proteins, such as histones but also the acetyl groups from several transcription factors, and in this way can change their activities. Of all seven mammalian SirTs, the human sirtuin SirT1 has been the most extensively studied. However, there is no crystal(More)
A new inhibitor for human sirtuin type proteins 1 and 2 (SIRT1 and SIRT2) was discovered through virtual database screening in search of new scaffolds. A series of compounds was synthesized based on the hit compound (3-[[3-(4-tert-butylphenyl)1,2,4-oxadiazole-5-carbonyl]amino]-1-[3-(trifluoromethyl)phenyl]thiourea). The most potent compound in the series(More)
Sirtuins catalyze the NAD(+) dependent deacetylation of N(epsilon)-acetyl lysine residues to nicotinamide, O'-acetyl-ADP-ribose (OAADPR) and N(epsilon)-deacetylated lysine. Here, an easy-to-synthesize Ac-Ala-Lys-Ala sequence has been used as a probe for the screening of novel N(epsilon)-modified lysine containing inhibitors against SIRT1 and SIRT2.(More)
Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors(More)
SIRT6 belongs to the family of histone deacetylases (class III), but it also has mono-ADP-ribosyltransferase activity. SIRT6 is a nuclear sirtuin that has been associated with aging, cellular protection, and sugar metabolism. Despite these important roles for SIRT6, thus far, there are only a few weak SIRT6 inhibitors available, and no structure-activity(More)
  • 1