Tereza Pereira de Souza

Learn More
Here we summarize the main results of our latest investigation on the spontaneous encapsulation of proteins (ferritin) and ribosomes inside lipid vesicles. We show that when vesicles form in a solution containing some macromolecules (even at low concentration), in contrast to the expectations, a few but measurable number of vesicles is able to capture a(More)
Protein expression is the most complex metabolic reaction that has been encapsulated in liposomes, mainly as an intermediate step toward the synthesis of minimal semisynthetic cells. Although there are different experimental approaches to achieving the synthesis of proteins inside liposomes and it is therefore not possible to give a standard recipe, all(More)
One of the main open questions in origin of life research focuses on the formation, by self-organization, of primitive cells composed by macromolecular compounds enclosed within a semi-permeable membrane. A successful experimental strategy for studying the emergence and the properties of primitive cells relies on a synthetic biology approach, consisting in(More)
The minimal cell (MC) project aims at understanding the emergence of cellular life by constructing experimental models of cells, according to a synthetic (constructive) biology approach. Our strategy – also known as the semi-synthetic one – is based on the encapsulation of the minimal number of biomolecular components inside lipid vesicles (liposomes).(More)
We emphasize here that, in considering the initial prebiotic reactions, it is fundamental to take into consideration the critical threshold concentration, in particular when talking about self-replication and initial metabolism. It is also shown that the in situ formation of vesicles in a solution containing macromolecular solutes, permits to obtain filled(More)
  • 1