Teresa W. M. Fan

Learn More
Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using(More)
The altered metabolism of tumors has been considered a target for anticancer therapy. However, the relationship between distinct tumor-initiating lesions and anomalies of tumor metabolism in vivo has not been addressed. We report that MYC-induced mouse liver tumors significantly increase both glucose and glutamine catabolism, whereas MET-induced liver(More)
The epithelial-mesenchymal transition (EMT) enhances cancer invasiveness and confers tumor cells with cancer stem cell (CSC)-like characteristics. We show that the Snail-G9a-Dnmt1 complex, which is critical for E-cadherin promoter silencing, is also required for the promoter methylation of fructose-1,6-biphosphatase (FBP1) in basal-like breast cancer(More)
Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased(More)
The annual killifish Austrofundulus limnaeus survives in ephemeral pond habitats by producing drought-tolerant diapausing embryos. These embryos probably experience oxygen deprivation as part of their normal developmental environment. We assessed the anoxia tolerance of A. limnaeus embryos across the duration of embryonic development. Embryos develop a(More)
Metabolic perturbations arising from malignant transformation have not been systematically characterized in human lung cancers in situ. Stable isotope resolved metabolomic analysis (SIRM) enables functional analysis of gene dysregulations in lung cancer. To this purpose, metabolic changes were investigated by infusing uniformly labeled 13C-glucose into(More)
In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be(More)
World-wide salinity and drought problems necessitate the understanding of biological adaptation to water deficit. Osmotic adjustment via organic solutes is a common strategy for organisms to deal with water deficit problems. Numerous water-soluble organic metabolites across several chemical classes are commonly utilized as osmolytes, including betaines,(More)
Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional(More)
Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic methods that rely on a priori knowledge of which compounds might be present. In the(More)