#### Filter Results:

#### Publication Year

2007

2011

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We present a simple algorithm for computing the PageRank (stationary distribution) of the stochastic Google matrix G. The algorithm lumps all dangling nodes into a single node. We express lumping as a similarity transformation of G, and show that the PageRank of the nondangling nodes can be computed separately from that of the dangling nodes. The algorithm… (More)

Ergodicity coefficients for stochastic matrices determine inclusion regions for subdominant eigenvalues; estimate the sensitivity of the stationary distribution to changes in the matrix; and bound the convergence rate of methods for computing the stationary distribution. We survey results for ergodicity coefficients that are defined by p-norms, for… (More)

- ‹
- 1
- ›