Learn More
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and(More)
Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (alpha-integrin), and pat-3 (beta-integrin) genes(More)
The organization of essential genes in the unc-22 region, defined by the deficiency sDf2 on linkage group IV, has been studied. Using the balancer nT1 (IV;V), which suppresses recombination over 49 map units, 294 lethal mutations on LGIV(right) and LGV(left) were recovered using EMS mutagenesis. Twenty-six of these mutations fell into the unc-22 region.(More)
The unc-52 gene encodes the nematode homologue of mammalian perlecan, the major heparan sulfate proteoglycan of the extracellular matrix. This is a large complex protein with regions similar to low-density lipoprotein receptors, laminin, and neural cell adhesion molecules (NCAMs). In this study, we extend our earlier work and demonstrate that a number of(More)
Five formaldehyde-induced deficiencies that uncover unc-22 IV, a gene affecting muscle structure in the nematode Caenorhabditis elegans were isolated and positioned. The largest deficiency, sDf2, extends in both directions from unc-22 and is approximately 1.0-2.0 map units in length. The other four deficiencies, sDf7, sDf8, sDf9 and sDf10, are all smaller(More)
The UNC-112 protein is required during initial muscle assembly in C. elegans to form dense bodies and M-lines. Loss of this protein results in arrest at the twofold stage of embryogenesis. In contrast, a missense mutation in unc-112 results in viable animals that have disorganized bodywall muscle and are paralyzed as adults. Loss or reduction of dim-1 gene(More)
Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures.(More)
A doubly mutant ama-1(m118m526) gene results in an RNA polymerase (Rpo) II that is unusually resistant to alpha-amanitin. Rpo II activity in isolated Caenorhabditis elegans cell nuclei is inhibited 50% by alpha-amanitin at a concentration of 150 micrograms/ml, making this enzyme 150 times more resistant to the toxin than Rpo II from the singly mutant(More)
The genetic organization of the region immediately adjacent to the unc-22 IV gene in Caenorhabditis elegans has been studied. We have identified twenty essential genes in this interval of approximately 1.5-map units on Linkage Group IV. The mutations that define these genes were positioned by recombination mapping and complementation with several(More)
We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an(More)