Teresa Casals

Learn More
BACKGROUND Congenital bilateral absence of the vas deferens (CBAVD) is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified. The molecular basis of CBAVD is not completely understood. Although patients with cystic fibrosis have mutations in both copies of the CFTR gene,(More)
delta F508 is the most frequent cystic fibrosis (CF) mutation and accounts for approximately 70% of CF chromosomes worldwide. Three highly polymorphic microsatellite markers have been used to study the origin and evolution of delta F508 chromosomes in Europe. Haplotype data demonstrate that delta F508 occurred more than 52,000 years ago, in a population(More)
An abbreviated tract of five thymidines (5T) in intron 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is found in approximately 10% of individuals in the general population. When found in trans with a severe CFTR mutation, 5T can result in male infertility, nonclassic cystic fibrosis, or a normal phenotype. To test whether the(More)
The increasing number of laboratories offering molecular genetic analysis of the CFTR gene and the growing use of commercial kits strengthen the need for an update of previous best practice guidelines (published in 2000). The importance of organizing regional or national laboratory networks, to provide both primary and comprehensive CFTR mutation screening,(More)
Congenital absence of the vas deferens (CAVD) is a heterogeneous disorder, largely due to mutations in the cystic fibrosis (CFTR) gene. Patients with unilateral absence of the vas deferens (CUAVD) and patients with CAVD in association with renal agenesis appear to have a different aetiology to those with isolated CAVD. We have studied 134 Spanish CAVD(More)
Mutations in the cystic fibrosis (CF) conductance transmembrane regulator (CFTR) gene have been detected in patients with CF and in males with infertility attributable to congenital bilateral absence of the vas deferens (CBAVD). Thirty individuals with CBAVD and 10 with congenital unilateral absence of the vas deferens (CUAVD) were analyzed by single-strand(More)
The gene responsible for cystic fibrosis (CF) has recently been identified, and a three-nucleotide deletion (delta F508 mutation) that results in the loss of a phenylalanine residue in the first putative ATP-binding domain of the predicted protein (CF transmembrane conductance regulator, CFTR) has been found to be the major CF mutation. Although several(More)
It is often challenging for the clinician interested in cystic fibrosis (CF) to interpret molecular genetic results, and to integrate them in the diagnostic process. The limitations of genotyping technology, the choice of mutations to be tested, and the clinical context in which the test is administered can all influence how genetic information is(More)
Highly informative intragenic microsatellite markers within the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene allow the analysis of associations between specific mutations and haplotypes. We have analysed 440 Spanish CF families carrying 22 different CF mutations and have established haplotypes in 1,036 chromosomes for microsatellites(More)
A cosmid library of recombinants containing nonmethylated CpG sites for rare-cutter restriction enzymes was used previously to isolate the gene IRP and four polymorphic DNA markers (pPT-3, pXV-2c, pCS.7, and pKM.19) which are close to and in linkage disequilibrium with the cystic fibrosis (CF) mutation. We have analyzed several new clones from the same(More)