Teresa A Sweat

Learn More
The molecular nature of many plant disease resistance (R) genes is known; the largest class encodes nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins that are structurally related to proteins involved in innate immunity in animals. Few genes conferring disease susceptibility, on the other hand, have been identified. Recent identification of(More)
The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During(More)
The fungus Cochliobolus victoriae causes Victoria blight of oats (Avena sativa) and is pathogenic due to its production of victorin, which induces programmed cell death in sensitive plants. Victorin sensitivity has been identified in Arabidopsis thaliana and is conferred by the dominant gene LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), which encodes a(More)
Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited(More)
The fungus Cochliobolus victoriae, the causal agent of Victoria blight, produces a compound called victorin that is required for pathogenicity of the fungus. Victorin alone reproduces disease symptoms on sensitive plants. Victorin sensitivity and susceptibility to C. victoriae were originally described on oats but have since been identified on Arabidopsis(More)
Phospholipase D (PLD) has emerged as an important enzyme involved in signal transduction, stress responses, protein trafficking, and membrane metabolism. This report describes the cloning and characterization of three novel PLD genes from rice, designated RPLD3, RPLD4 and RPLD5. The rice PLDs, including the previously isolated RPLD1 and RPLD2, are similar(More)
  • 1