Terence P. Speed

Learn More
In this paper we report exploratory analyses of high-density oligonucleotide array data from the Affymetrix GeneChip system with the objective of improving upon currently used measures of gene expression. Our analyses make use of three data sets: a small experimental study consisting of five MGU74A mouse GeneChip arrays, part of the data from an extensive(More)
High density oligonucleotide array technology is widely used in many areas of biomedical research for quantitative and highly parallel measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology each gene is typically represented by a set of 11-20 pairs of probes. In order to obtain expression measures it is(More)
The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number.(More)
A reliable and precise classiŽ cation of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and highdensity oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousands of genes simultaneously, microarray experiments may lead(More)
MOTIVATION When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not(More)
Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell(More)
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log(More)
SUMMARY Modern experimental techniques, as for example DNA microarrays, as a result usually produce a long list of genes, which are potentially interesting in the analyzed process. In order to gain biological understanding from this type of data, it is necessary to analyze the functional annotations of all genes in this list. The Gene-Ontology (GO) database(More)
cDNAmicroarrays permit us to study the expression of thousands of genes simultaneously. They are now used in many different contexts to compare mRNA levels between two or more samples of cells. Microarray experiments typically give us expression measurements on a large number of genes, say 10,000-20,000, but with few, if any, replicates for each gene.(More)
Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array.(More)