Learn More
Caveolae are 50- to 100-nm omega-shaped invaginations of the plasma membrane that function as regulators of signal transduction. Caveolins are a class of oligomeric structural proteins that are both necessary and sufficient for caveolae formation. Interestingly, caveolin-1 has been implicated in the pathogenesis of oncogenic cell transformation,(More)
Caveolae are vesicular organelles (50-100-nm in diameter) that are particularly abundant in cells of the cardiovascular system, including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes and fibroblasts. In these cell types, caveolae function both in protein trafficking and signal transduction, as well as in cholesterol homeostasis.(More)
Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a(More)
The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little(More)
Several lines of evidence suggest that a functional relationship exists between caveolin-1 and insulin signaling. However, it remains unknown whether caveolin-1 is normally required for proper insulin receptor signaling in vivo. To address this issue, we examined the status of insulin receptor signaling in caveolin-1 (-/-)-deficient (Cav-1 null) mice. Here,(More)
Recent studies have shown that caveolin-1 (Cav-1) plays an important role as a regulator of angiogenesis in vitro. Here, we use Cav-1 knockout (KO) mice as a model system to examine the in vivo relevance of these findings. A primary mediator of angiogenesis is basic fibroblast growth factor (bFGF). Thus, we studied bFGF-induced angiogenesis in Cav-1 KO mice(More)
Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it(More)
Recent reports have suggested a possible association between HIV-1 infection and primary pulmonary hypertension (PPH), but most of the patients described to date have either had acquired immunodeficiency syndrome (AIDS) with concurrent lung infections or have administered Factor VIII intravenously for hemophilia. We report three human immunodeficiency virus(More)
Recently, it was shown that caveolin-1 can be redirected from the cell surface to intracellular lipid droplets in a variety of cell types. Here, we directly address the role of caveolin-1 in lipid droplet formation and breakdown, showing that caveolin-1 null mice exhibit markedly attenuated lipolytic activity. Mechanistically, although the activity of(More)
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp.,(More)