Tengis S Pavlov

Learn More
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Consequently, ENaC is a major effector impacting systemic blood volume and pressure. We have shown recently that Rac1 increases ENaC activity, whereas Cdc42 fails to change channel activity. Here we tested whether Rac1(More)
Epoxyeicosatrienoic acids (EETs) contribute to haemodynamics, electrolyte homoeostasis and blood pressure regulation, leading to the concept that EETs can be therapeutically targeted for hypertension. In the present study, multiple structural EET analogues were synthesized based on the EET pharmacophore and vasodilator structure-activity studies. Four EET(More)
Salt-sensitive hypertension leads to kidney injury. The Dahl salt-sensitive hypertensive rat (Dahl SS) is a model of salt-sensitive hypertension and progressive kidney injury. The current set of experimental studies evaluated the kidney protective potential of a novel epoxyeicosatrienoic acid analog (EET-B) in Dahl SS hypertension. Dahl SS rats receiving(More)
Epithelial Na(+) channel (ENaC) activity is regulated, in part, by the cortical cytoskeleton. Here we demonstrate that cortactin is highly expressed in the kidney cortex and polarized epithelial cells, and is localized to the cortical collecting duct. Coexpression of cortactin with ENaC decreases ENaC activity, as measured in patch-clamp experiments.(More)
BACKGROUND The Epithelial Na(+) Channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. Similar to other ion channels, ENaC activity is regulated, in part, by cortical cytoskeleton. Besides, the cytoskeleton is an established target for small G proteins signaling. Here we studied whether ENaC activity is modulated(More)
The epithelial sodium channel (ENaC) is believed to represent the rate-limiting step for sodium absorption in the renal collecting duct. Consequently, ENaC is a central effector affecting systemic blood volume and pressure. Sodium and water transport are dysregulated in diabetes mellitus. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists(More)
Sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study(More)
Epithelial Na+ channels (ENaCs) mediate sodium reabsorption in the cortical collecting duct (CCD), but the regulatory pathways that modulate the activity of these channels are incompletely understood. Here, we observed that endothelin-1 (ET-1) attenuates ENaC activity acutely by reducing the channel's open probability and chronically by decreasing the(More)
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase(More)
The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules(More)