Teng-Ming Chen

Learn More
This study presents extremely uniform colloidal quantum dot white light-emitting diodes (QD-WLEDs) that demonstrate a high color rendering index (CRI) and correlated color temperatures (CCTs) ranging from 2500 to 4500 K. Experimental results indicate that the structure of the distributed Bragg reflector (DBR) containing a stopband in the UV region enhances(More)
To enhance the uniformity of correlated color temperature (CCT) and luminous flux, we integrated ZrO2 nanoparticles into white light-emitting diodes. This novel packaging scheme led to a more than 12% increase in luminous flux as compared to that in conventional dispensing structures. This was attributed to the scattering effect of ZrO2 nanoparticles, which(More)
A highly efficient and reliable hybrid quantum dot (QD) light-emitting diode (LED) is demonstrated and analyzed. The CdTe colloidal QDs are embedded in the sodium chloride (NaCl) ionic crystal to prevent external wear. The GaN-based ultraviolet (UV) LED is used as the excitation source. The mixture of colloidal QD/NaCl composite and polymer can be filled(More)
The crystal structure of Eu(2+)-activated Sr(8)ZnSc(PO(4))(7):Eu(2+) phosphor was refined and determined from XRD profiles by the Rietveld refinement method using a synchrotron light source. This phosphor crystallizes in the monoclinic structure with the I2/a space group. The SZSP:xEu(2+) phosphors showed a broad yellow emission band centered at 511 and 571(More)
Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC Department of Photonics and the Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC c Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC Department of Applied Chemistry, National Chiao Tung(More)
This study employs the polyfluorene composite (called Green B) with several colors of quantum dots to generate the high-color-rendering index (CRI) white LEDs. The Green B polymer is a good candidate to manufacture the hybrid w-LED because of its good quantum efficacy. The hybrid w-LEDs are fabricated by the mixing of Green B with yellow quantum dots and(More)
We report the fabrication and electroluminescence (EL) characterization of a white-emitting hybrid organic/inorganic light emitting device (LED) by integrating core-shell CdSe/ZnS quantum dots (QDs) acting as a yellow emitter and polyfluorenes as the blue emitter in a multilayered structure. The hybrid white-emitting device was fabricated by spin-coating(More)
Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely(More)
Eu(2+)-activated Sr(8)MgY(PO(4))(7) and Sr(8)MgLa(PO(4))(7) yellow-emitting phosphors were successfully synthesized by solid-state reactions for applications in excellent color rendering index white light-emitting diodes (LEDs). The excitation and reflectance spectra of these phosphors show broad band excitation and absorption in the 250-450 nm(More)
A new Ce(3+)-activated thiosilicate phosphor, BaLa2Si2S8:Ce(3+), was synthesized by using solid-state methods in a fused silica ampule and found to crystallize in the structure type of La2PbSi2S8. The crystal structure has been characterized by synchrotron X-ray diffraction and refined with Rietveld methods. This novel cyan-emitting phosphor can be excited(More)