Tejas I. Dhamecha

Learn More
For a robust face biometric system, a reliable anti-spoofing approach must be deployed to circumvent the print and replay attacks. Several techniques have been proposed to counter face spoofing, however a robust solution that is computationally efficient is still unavailable. This paper presents a new approach for spoofing detection in face videos using(More)
The advent of near infrared imagery and it’s applications in face recognition has instigated research in cross spectral (visible to near infrared) matching. Existing research has focused on extracting textural features including variants of histogram of oriented gradients. This paper focuses on studying the effectiveness of these features for cross spectral(More)
Face verification, though an easy task for humans, is a long-standing open research area. This is largely due to the challenging covariates, such as disguise and aging, which make it very hard to accurately verify the identity of a person. This paper investigates human and machine performance for recognizing/verifying disguised faces. Performance is also(More)
This research presents a forensics application of matching two latent fingerprints. In crime scene settings, it is often required to match multiple latent fingerprints. Unlike matching latent with inked or live fingerprints, this research problem is very challenging and requires proper analysis and attention. The contribution of this paper is three fold:(More)
Face verification, though for humans seems to be an easy task, is a long-standing research area. With challenging covariates such as disguise or face obfuscation, automatically verifying the identity of a person is assumed to be very hard. This paper explores the feasibility of face verification under disguise variations using multi-spectrum (visible and(More)
Over the years, automatic gender recognition has been used in many applications. However, limited research has been done on analyzing gender recognition across ethnicity scenario. This research aims at studying the performance of discriminant functions including Principal Component Analysis, Linear Discriminant Analysis and Subclass Discriminant Analysis(More)
Matching near-infrared to visible images is one of the heterogeneous face recognition challenges in which spectral variations cause changes in the appearance of face images. In this paper, we propose to utilize a keypoint selection approach in the recognition pipeline. The proposed keypoint selection approach is a fast approximation of feature selection(More)
Subclass discriminant analysis is found to be applicable under various scenarios. However, it is computationally expensive to update the between-class and within-class scatter matrices in batch mode. This research presents an incremental subclass discriminant analysis algorithm to update SDA in incremental manner with increasing number of samples per class.(More)