Tejas Gandhi

Learn More
The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as(More)
Targeted analysis of data-independent acquisition (DIA) data is a powerful mass spectrometric approach for comprehensive, reproducible and precise proteome quantitation. It requires a spectral library, which contains for all considered peptide precursor ions empirically determined fragment ion intensities and their predicted retention time (RT). RTs,(More)
Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of(More)
Transport of solutes between the cytosol and the vacuolar lumen is of crucial importance for various functions of vacuoles, including ion homeostasis; detoxification; storage of different molecules such as amino acids, phosphate, and calcium ions; and proteolysis. To identify proteins that catalyze solute transport across the vacuolar membrane, the membrane(More)
This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.
LC-MALDI provides an often overlooked opportunity to exploit the separation between LC-MS and MS/MS stages of a 2D-LC-MS-based proteomics experiment, that is, by making a smarter selection for precursor fragmentation. Apex Peptide Elution Chain Selection (APECS) is a simple and powerful method for intensity-based peptide selection in a complex sample(More)
BACKGROUND Mass spectrometry is selective and sensitive, permitting routine quantification of multiple plasma proteins. However, commonly used nanoflow liquid chromatography (LC) approaches hamper sample throughput, reproducibility, and robustness. For this reason, most publications using plasma proteomics to date are small in study size. METHODS AND(More)
The identification of proteins in proteomics experiments is usually based on mass information derived from tandem mass spectrometry data. To improve the performance of the identification algorithms, additional information available in the fragment peak intensity patterns has been shown to be useful. In this study, we consider the effect of iTRAQ labeling on(More)
The performance of DIA methods was influenced by the number of DIA windows, the scan resolution, the gradient length and the sampling of the chromatographic peaks. Additionally, the MS1 scan of the DIA method had an important influence on the performance. To optimize quantification on MS1, we evaluated the following conditions. We established a(More)
Comprehensive, reproducible and precise analysis of large sample cohorts is one of the key objectives of quantitative proteomics. Here, we present an implementation of data-independent acquisition using its parallel acquisition nature that surpasses the limitation of serial MS2 acquisition of data-dependent acquisition on a quadrupole ultra-high field(More)