Learn More
The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis,(More)
 By using highly regenerative calluses, we developed a stable transformation system in garlic (Allium sativum L.). The temperature and number of days of co-cultivation with Agrobacterium tumefaciens was shown to be an important factor in transient expression of the uid A gene. After a culture period of 5 months in selection medium containing hygromycin, 20(More)
In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-layer in the walls of fiber cells and generates abnormal tensile stress in the secondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific polysaccharide(More)
Repetitive DNA was cloned from HindIII-digested genomic DNA of Larix leptolepis. The repetitive DNA was about 170 bp long, had an AT content of 67%, and was organized tandemly in the genome. Using fluorescence in situ hybridization and subsequent DAPI banding, the repetitive DNA was localized in DAPI bands at the proximal region of one arm of chromosomes in(More)
Japanese red pine, Pinus densiflora, has 2n=24 chromosomes, of which most carry chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI) bands at their centromere-proximal regions. It was proposed that these regions contain highly repetitive DNA. The DNA localized in the proximal fluorescent bands was isolated and characterized. In P. densiflora,(More)
Wogon-Sugi has been reported as a cytoplasmically inherited virescent mutant selected from a horticultural variety of Cryptomeria japonica. Although previous studies of plastid structure and inheritance indicated that at least some mutations are encoded by the chloroplast genome, the causative gene responsible for the primary chlorophyll deficiency in(More)
We performed biosafety assessments of transgenic poplars prior to field trials. Constitutive expression of the Aspergillus aculeatus xyloglucanase in Populus alba increased the cellulose content and specific gravity of its stem, the leaves of which were visibly greener, thicker, and smaller than those of the wild-type plant. Although the young transgenic(More)
Holocellulose samples prepared from transgenic poplars overexpressing xyloglucanase had crystal widths of 3.2–3.5 nm as a result of the (2 0 0) plane, based on their X-ray diffraction patterns, and crystal widths were greater than those of the wild type (3.0 nm). Cellulose microfibril widths in the holocellulose samples were further determined from(More)
Xyloglucan is thought to be a key hemicellulose cross-linking adjacent cellulose microfibrils in plant cell walls. The growth traits of transgenic poplars (Populus alba) with decreased xyloglucan from overexpression of Aspergillus aculeatus xyloglucanase were characterized during a 4-year field trial. The field-trial site consisted of two blocks, a fertile(More)
A genetic transformation procedure for Cryptomeria japonica was developed after co-cultivation of embryogenic tissues with the disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the visual reporter gene sgfp and two selectable marker genes, hpt and nptII. We were able to generate eight and three independent transgenic lines per gram of(More)