Learn More
Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in(More)
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse(More)
Spinal motoneurons are highly vulnerable in amyotrophic lateral sclerosis (ALS).Previous research using a standard animal model, the mutant superoxide dismutase-1 (SOD1)mouse, has revealed deficits in many cellular properties throughout its lifespan. The electrical properties underlying motoneuron excitability are some of the earliest to change; starting at(More)
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge(More)
Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are neurodegenerative conditions that affect large motor neurons of the central nervous system. We have identified a familial juvenile PLS (JPLS) locus overlapping the previously identified ALS2 locus on chromosome 2q33. We report two deletion mutations in a new gene that are found both(More)
CONTEXT Occasionally, 2 or more major neurodegenerative diseases arise simultaneously. An understanding of the genetic bases of combined disorders, such as amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD), will likely provide insight into mechanisms of these and related neurodegenerative diseases. OBJECTIVE To identify loci that(More)
Dendritic cells are potent antigen-presenting cells that initiate and amplify immune responses. To determine whether dendritic cells participate in inflammatory reactions in amyotrophic lateral sclerosis (ALS), we examined mRNA expression of dendritic cell surface markers in individual sporadic ALS (sALS), familial ALS (fALS), and nonneurological disease(More)
BACKGROUND The SQSTM1 gene encodes p62, a major pathologic protein involved in neurodegeneration. OBJECTIVE To examine whether SQSTM1 mutations contribute to familial and sporadic amyotrophic lateral sclerosis (ALS). DESIGN Case-control study. SETTING Academic research. Patients  A cohort of 546 patients with familial (n = 340) or sporadic (n = 206)(More)
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are both relentlessly progressive and ultimately fatal neurological disorders. ALS is familial in approximately 10% of cases and FTD in approximately 30%. Inheritance is usually autosomal dominant with variable penetrance. Phenotypic overlap between ALS and FTD can occur within the same(More)
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant(More)