Learn More
In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order(More)
It has been proposed that mismatch negativity (MMN) is generated by temporal and frontal lobe sources, the former being associated with change detection and the latter with involuntary switching of attention to sound change. If this switching of attention is triggered by the temporal cortex change-detection mechanism, one would expect that the frontal(More)
The present study addresses the functional role of the temporal and frontal lobes in auditory change detection. Prior event-related potential (ERP) research suggested that the mismatch negativity (MMN) reflects the involvement of a temporofrontal network subserving auditory change detection processes and the initiation of an involuntary attention switch. In(More)
OBJECTIVE Recent studies have shown that the mismatch negativity (MMN), a change-specific component of the event-related potential (ERP), for particular auditory features is degraded in different clinical populations. This suggests that the MMN could, in principle, reflect the whole profile and extent of the central auditory deficit. In the present article,(More)
OBJECTIVES Children's auditory event-related potentials (ERPs) are dominated by the P1 and N2 peaks, while the N1 wave emerges between 3 and 4 years of age. The neural substrates and the behavioral correlates of the protracted N1 maturation, as well as of the 10-year long predominance of the N2 are unclear. The present study utilized high-resolution(More)
BACKGROUND While human auditory cortex is known to contain tonotopically organized auditory cortical fields (ACFs), little is known about how processing in these fields is modulated by other acoustic features or by attention. METHODOLOGY/PRINCIPAL FINDINGS We used functional magnetic resonance imaging (fMRI) and population-based cortical surface analysis(More)
While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of(More)
The interindividual variation and test-retest stability of the mismatch negativity (MMN) and N1 components of the event-related potential (ERP) were investigated by presenting standard (85%) and deviant tones (15%) to 10 young subjects in 2 sessions separated by 1 month. Deviant tones in different blocks were either frequency or duration changes with(More)
Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch(More)
Functional magnetic resonance imaging (fMRI) was used to examine the processing of infrequent changes occurring in an unattended sound sequence. In event-related brain potentials (ERPs), such sound changes typically elicit several responses, including an enhanced N1, the mismatch negativity (MMN), and the P3a. In the present study, subjects were presented(More)