Teemu P Ikonen

Learn More
Interspecific somatic hybrids produced by protoplast fusion between two wild Solanum species (S. acaule, acl; S. brevidens, brd) and cultivated potato Solanum tuberosum (tbr) were analyzed in terms of the starch nanometer-range structure and glycoalkaloid (GA) contents. The crystallinity of starch granules, the average size of starch crystallites, and the(More)
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the(More)
A new principle in constructing molecular complexes from the known high-resolution domain structures joining data from NMR and small-angle x-ray scattering (SAXS) measurements is described. Structure of calmodulin in complex with trifluoperazine was built from N- and C-terminal domains oriented based on residual dipolar couplings measured by NMR in a dilute(More)
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during(More)
The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and(More)
Chlorosomes, the main antenna complexes of green photosynthetic bacteria, were isolated from null mutants of Chlorobium tepidum, each of which lacked one enzyme involved in the biosynthesis of carotenoids. The effects of the altered carotenoid composition on the structure of the chlorosomes were studied by means of x-ray scattering and electron(More)
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which(More)
Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two(More)
The transcriptional repressor Rex is a sensor of the intracellular NADH/NAD(+) redox state through direct binding of NADH or NAD(+). Homodimeric Rex protein from Thermus aquaticus (T-Rex) and Bacillus subtilis (B-Rex) exists in several different conformations. In both organisms, Rex in complex with NADH has the DNA binding domains packed together at the(More)
The structure of lyotropic liquid crystalline or gellike phases formed in cationic starch (CS)/ anionic surfactant/water systems in the temperature range 25-80 °C has been investigated by smallangle X-ray scattering. The surfactants were sodium dodecyl sulfate (SDS), sodium decanoate (NaDe), sodium dodecanoate (NaDod), sodium palmitate (NaPal), sodium(More)