Learn More
We describe a method to evaluate the ratio of ionic fluxes through recombinant channels expressed in a single Xenopus oocyte. A potassium channel encoded by the Drosophila Shaker gene tested by this method exhibited flux ratios far from those expected for independent ion movement. At a fixed extracellular concentration of 25 mM K+, this channel showed(More)
1. Na channel reversal potentials were studied in perfused voltage clamped squid giant axons. The concentration dependence of ion selectivity was determined with both external and internal changes in Na and ammonium concentrations. 2. A tenfold change in the internal ammonium activity results in a 42 mV shift in the reversal potential, rather than the 56 mV(More)
We measured unidirectional K+ in- and efflux through an inward rectifier K channel (IRK1) expressed in Xenopus oocytes. The ratio of these unidirectional fluxes differed significantly from expectations based on independent ion movement. In an extracellular solution with a K+ concentration of 25 mM, the data were described by a Ussing flux-ratio exponent,(More)
The block of squid axon sodium channels by H ions was studied using voltage-clamp and internal perfusion techniques. An increase in the concentration of internal permeant ions decreased the block produced by external H ions. The voltage dependence of the block was found to be nonmonotonic: it was reduced by both large positive and large negative potentials.(More)
Three broad classes of Ca(2+)-activated potassium channels are defined by their respective single channel conductances, i.e. the small, intermediate, and large conductance channels, often termed the SK, IK, and BK channels, respectively. SK channels are likely encoded by three genes, Kcnn1-3, whereas IK and most BK channels are most likely products of the(More)
The sodium flux ratio across the axolemma of internally perfused, voltage-clamped giant axons of Loligo pealei has been measured at various membrane potentials. The flux ratio exponent obtained from these measurements was about unity and independent of membrane voltage over the 50 mV range from about -20 to ł mV. These results, combined with previous(More)
1. The concentration and voltage dependence of current through the Na channels of squid giant axons was studied. The permeant cations Na, K and ammonium were used. 2. The Na channel current at a fixed voltage saturates as the internal permeant ion concentration is increased. The half-saturation activities at 50 mV were found to be 623, 268, 161 mM for Na,(More)
The effects of changes in the concentration of calcium in solutions bathing Myxicola giant axons on the voltage dependence of sodium and potassium conductance and on the instantaneous sodium and potassium current-voltage relations have been measured. The sodium conductance-voltage relation is shifted along the voltage axis by 13 mV in the hyperpolarizing(More)
Block of K+ channels can be influenced by the ability of charged residues on the protein surface to accumulate cationic blocking ions to concentrations greater than those in bulk solution. We examined the ionic strength dependence of extracellular block of Shaker K+ channels by tetraethylammonium ions (TEA+) and by a trivalent quaternary ammonium ion,(More)
We used molecular biological and patch-clamp techniques to identify the Ca(2+)-activated K(+) channel genes in mouse parotid acinar cells. Two types of K(+) channels were activated by intracellular Ca(2+) with single-channel conductance values of 22 and 140 pS (in 135 mM external K(+)), consistent with the intermediate and maxi-K classes of Ca(2+)-activated(More)