Ted A. Scambos

Learn More
[1] From 1953 to 2006, Arctic sea ice extent at the end of the melt season in September has declined sharply. All models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) show declining Arctic ice cover over this period. However, depending on the time window for analysis, none or very few individual model(More)
Using satellite-derived surface elevation and velocity data, we found major short-term variations in recent ice discharge and mass loss at two of Greenland's largest outlet glaciers. Their combined rate of mass loss doubled in less than a year in 2004 and then decreased in 2006 to near the previous rates, likely as a result of fast re-equilibration of(More)
Satellite laser altimeter elevation profiles from 2003 to 2006 collected over the lower parts of Whillans and Mercer ice streams, West Antarctica, reveal 14 regions of temporally varying elevation, which we interpret as the surface expression of subglacial water movement. Vertical motion and spatial extent of two of the largest regions are confirmed by(More)
We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in(More)
We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the(More)
Using inverse methods constrained by recent satellite observations, we have produced a comprehensive estimate of the basal shear stress beneath the Filchner-Ronne ice streams. The inversions indicate that a weak bed (approx. 4-20kPa) underlies much of these ice streams. Compared to the Ross ice streams, the distribution of weak subglacial till is more(More)
Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150(More)
We investigate the elevation and mass-balance response of tributary glaciers following the loss of the Larsen A and B ice shelves, Antarctic Peninsula (in 1995 and 2002 respectively). Our study uses MODIS imagery to track ice extent, and ASTER and SPOT5 digital elevation models (DEMs) plus ATM and ICESat laser altimetry to track elevation changes, spanning(More)
Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8(More)
The surface velocity of a rapidly moving ice stream has been determined to high accuracy and spatial density with the use of sequential satellite imagery. Variations of ice velocity are spatially related to surface undulations, and transverse velocity variations of up to 30 percent occur. Such large variations negate the concept of plug flow and call into(More)