Learn More
While reconstructing skeletal movement using stereophotogrammetry, the relative movement between a skin marker and the underlying bone is regarded as an artefact (soft tissue artefact: STA). Similarly, the consequent pose, size and shape variations that affect a cluster of markers associated with a bony segment, or any arbitrary change of configuration in(More)
When joint kinematics is analyzed using noninvasive stereophotogrammetry, movements of the skin markers relative to the underlying bone are regarded as artefacts (soft tissue artefact (STA)). Recent literature suggests that an appropriate estimation of joint kinematics may be obtained by compensating for only a portion of the STA, but no evidence for this(More)
Sixty healthy, athletic children were treated on a Cybex II Dynamometer to obtain values for the relative strengths of the major muscle groups of the lower extremity. Prepubescent and postpubescent boys and girls were tested. Of the anthropometric parameters measured, lean body weight correlated best with maximal torque force development. In prepubescent(More)
When stereophotogrammetry and skin-markers are used, bone-pose estimation is jeopardised by the soft tissue artefact (STA). At marker-cluster level, this can be represented using a modal series of rigid (RT; translation and rotation) and non-rigid (NRT; homothety and scaling) geometrical transformations. The NRT has been found to be smaller than the RT and(More)
The position, in a pelvis-embedded anatomical coordinate system, of skin points located over the following anatomical landmarks (AL) was determined while the hip assumed different spatial postures: right and left anterior superior and posterior superior iliac spines, and the sacrum. Postures were selected as occurring during walking and during a(More)
Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect.The aim of this study was to identify and(More)
Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors(More)
When analysing human movement through stereophotogrammetry, skin-markers are used. Their movement relative to the underlying bone is known as a soft tissue artefact (STA). A mathematical model to estimate subject- and marker-specific STAs generated during a given motor task, is required for both skeletal kinematic estimators and comparative assessment using(More)
When using stereophotogrammetry and skin-markers, the reconstruction of skeletal movement is affected by soft-tissue artefact (STA). This may be described by considering a marker-cluster as a deformable shape undergoing a geometric transformation formed by a non-rigid (change in size and shape) and a rigid component (translation and rotation displacements).(More)
  • 1