Tea Mišić Radić

Learn More
Extracellular polysaccharide production by marine diatoms is a significant route by which photosynthetically produced organic carbon enters the trophic web and may influence the physical environment in the sea. This study highlights the capacity of atomic force microscopy (AFM) for investigating diatom extracellular polysaccharides with a subnanometer(More)
It is generally accepted that a diatom cell wall is characterized by a siliceous skeleton covered by an organic envelope essentially composed of polysaccharides and proteins. Understanding of how the organic component is associated with the silica structure provides an important insight into the biomineralization process and patterning on the cellular(More)
Using high resolution molecular technique of atomic force microscopy, we address the extracellular polymer production of Adriatic diatom Cylindrotheca closterium analyzed at the single cell level and the supramolecular organization of gel phase isolated from the Northern Adriatic macroaggregates. Our results revealed that extracellular polysaccharides(More)
Despite many advances in research on photosynthetic carbon fixation in marine diatoms, the biophysical and biochemical mechanisms of extracellular polysaccharide production remain significant challenges to be resolved at the molecular scale in order to proceed toward an understanding of their functions at the cellular level, as well as their interactions(More)
The present study introduces atomic force microscopy (AFM) as a tool for characterization of marine gel network and marine biopolymers self-assembly, not accessible by other techniques. AFM imaging of marine gel samples collected in summers 2003 and 2004 in the northern Adriatic Sea provided insight into molecular organization of gel network and(More)
In the present study, we investigated nitrosoarene dimerization on an Au(111) and on the surface of gold nanoparticles (AuNPs). High-resolution STM images revealed that 8-thiocyanatooctyl-4nitrosobenzoate (NCS(CH2)8OOCC6H4NO) forms well-ordered monolayer on an Au(111) surface displaying hexagonal 3 3 3 3  structure. AFM data indicated that this compound(More)
  • 1