Te-Wei Lee

Learn More
Current progress in nanomedicine has exploited the possibility of designing tumor-targeted nanocarriers being able to deliver radionuclide payloads in a site or molecular selective manner to improve the efficacy and safety of cancer imaging and therapy. Radionuclides of auger electron-, alpha-, beta-, and gamma-radiation emitters have been(More)
Micro positron emission tomography (PET) and micro single-photon emission computed tomography (SPECT), used for imaging small animals, have become essential tools in developing new pharmaceuticals and can be used, among other things, to test new therapeutic approaches in animal models of human disease, as well as to image gene expression. These imaging(More)
BACKGROUND Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR) effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT) image, dosimetry, and therapeutic efficacy of (188)Re-labeled(More)
BACKGROUND The combination of a radioisotope with a chemotherapeutic agent in a liposomal carrier (ie, Indium-111-labeled polyethylene glycol pegylated liposomal vinorelbine, [(111)In-VNB-liposome]) has been reported to show better therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this therapeutic effect(More)
In this study, lactoferrin-conjugated PEGylated liposomes (PL), a potential drug carrier for brain delivery, was loaded with radioisotope complex, 99mTc labeled N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (99mTc-BMEDA) for in vitro and in vivo evaluations. The hydrophilicity of liposomes was enhanced by PEGylation which was not an ideal brain(More)
Fluorine-18 fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine ((18)F-FLT) images cellular(More)
PURPOSE In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. MATERIALS AND METHODS The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The(More)
Background: Fluorine-18-2-deoxy-D-glucose ([ 18 F]FDG) has been widespread used in tumor detection. This study investigated the dynamic accumulation and the distribution of [ 18 F]FDG in human thyroid cancer bearing nude mice with INER ARO-PET (Animal Rotating PET) scan and autoradiography. Methods: Human thyroid cancer cells were subcuta-neously inoculated(More)
External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 ((188)Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We(More)