Learn More
Long-term arsenic exposure is associated with an increased risk of vascular diseases including ischemic heart disease, cerebrovascular disease, and carotid atherosclerosis. The pathogenic mechanisms of arsenic atherogenicity are not completely clear. A fundamental role for inflammation in atherosclerosis and its complications has become appreciated(More)
Arsenic exposure is associated with an increased risk of vascular disorders, and results in increased oxidative stress in endothelial cells and vascular smooth muscle cells (VSMCs). Since oxidative stress is involved in regulating the expression of genes related to atherogenesis, we investigated its involvement in the enhanced expression of three(More)
DNA microarray technology provides useful tools for profiling global gene expression patterns in different cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondiscriminatory genes. Selection of an(More)
Arsenite-induced mitotic abnormalities result in mitotic death in several cancer cell lines. However, how arsenite induces these effects is not known. We have previously shown that arsenite induces mitotic arrest, mitotic abnormalities, and mitotic death in CGL-2 cells. To further delineate the mechanism of action of arsenite, we examined its effect on(More)
Inorganic arsenic is an environmental carcinogen. The generation of toxic trivalent methylated metabolites complicates the study of arsenic-mediated carcinogenesis. This study systematically evaluated the effect of chronic treatment with sodium arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), and dimethylarsinous acid (DMA(III)) on immortalized(More)
Inorganic arsenic is a well-documented human carcinogen. Chronic low-dose exposure to inorganic arsenic is associated with an increased incidence of a variety of cancers, including skin, lung, bladder, and liver cancer. Because genetic alterations often occur during cancer development, the objective of this study was to explore what types of genetic(More)
We previously reported that the sustained exposure of human urothelial cells (HUCs) to low-dose sodium arsenite induces changes in the gene expression profile and neoplastic transformation. In this study, we used the HumanMethylation27 BeadChip to analyze genome-wide methylation profiles and 5-aza-2′-deoxycytidine to examine the involvement of promoter(More)
Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the(More)
BACKGROUND Arsenic is a strong stimulus of heme oxygenase (HO)-1 expression in experimental studies in response to oxidative stress caused by a stimulus. A functional GT-repeat polymorphism in the HO-1 gene promoter was inversely correlated to the development of coronary artery disease in diabetics and development of restenosis following angioplasty in(More)