Learn More
Arsenic-resistant cells (R15), derived from a human lung adenocarcinoma cell line (CL3), were 10-fold more resistant to sodium arsenite (As(III)). Because R15 cells accumulated less arsenic than parental CL3 cells, this arsenic resistance may be due to higher efflux and/or lower uptake of As(III). We therefore compared expression of the multidrug(More)
Long-term arsenic exposure is associated with an increased risk of vascular diseases including ischemic heart disease, cerebrovascular disease, and carotid atherosclerosis. The pathogenic mechanisms of arsenic atherogenicity are not completely clear. A fundamental role for inflammation in atherosclerosis and its complications has become appreciated(More)
Arsenic exposure is associated with an increased risk of vascular disorders, and results in increased oxidative stress in endothelial cells and vascular smooth muscle cells (VSMCs). Since oxidative stress is involved in regulating the expression of genes related to atherogenesis, we investigated its involvement in the enhanced expression of three(More)
We report here that sequential digestion with endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K in Tris buffer markedly increased the sensitivity for detecting DNA damage in arsenic-treated cells. These three enzymes increased DNA strand breaks in an additive manner. By using this sequential-enzyme-digestion comet assay, we(More)
Gene inactivation through DNA hypermethylation plays a pivotal role in carcinogenesis. This study aimed to profile aberrant DNA methylation in different stages of liver disease, namely noncirrhosis, cirrhosis and hepatocellular carcinoma (HCC), and also to clarify the influence of hepatitis B virus (HBV) infection on the aberrant DNA methylation in HCCs.(More)
DNA microarray technology provides useful tools for profiling global gene expression patterns in different cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondiscriminatory genes. Selection of an(More)
BACKGROUND Arsenic is a well-documented carcinogen of human urothelial carcinoma (UC) with incompletely understood mechanisms. OBJECTIVES This study aimed to compare the genome-wide DNA methylation profiles of arsenic-induced UC (AsUC) and non-arsenic-induced UC (Non-AsUC), and to assess associations between site-specific methylation levels and cumulative(More)
Inorganic arsenic is an environmental carcinogen. The generation of toxic trivalent methylated metabolites complicates the study of arsenic-mediated carcinogenesis. This study systematically evaluated the effect of chronic treatment with sodium arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), and dimethylarsinous acid (DMA(III)) on immortalized(More)
Arsenite-induced mitotic abnormalities result in mitotic death in several cancer cell lines. However, how arsenite induces these effects is not known. We have previously shown that arsenite induces mitotic arrest, mitotic abnormalities, and mitotic death in CGL-2 cells. To further delineate the mechanism of action of arsenite, we examined its effect on(More)
Inorganic arsenic is a well-documented human carcinogen. Chronic low-dose exposure to inorganic arsenic is associated with an increased incidence of a variety of cancers, including skin, lung, bladder, and liver cancer. Because genetic alterations often occur during cancer development, the objective of this study was to explore what types of genetic(More)