Tchimou N'Takpé

Learn More
While most parallel task graphs scheduling research has been done in the context of single homogeneous clusters, heterogeneous platforms have become prevalent and are extremely attractive for deploying applications at unprecedented scales. In this paper we address the need for scheduling techniques for parallel task applications for heterogeneous clusters(More)
Mixed-parallel applications can take advantage of large-scale computing platforms but scheduling them efficiently on such platforms is challenging. In this paper we compare the two main proposed approaches for solving this scheduling problem on a heterogeneous set of homogeneous clusters. We first modify previously proposed algorithms for both approaches(More)
Scheduling multiple applications on heterogeneous multi-clusters is challenging as the different applications have to compete for resources. A scheduler thus has to ensure a fair distribution of resources among the applications and prevent harmful selfish behaviors while still trying to minimize their respective completion time. In this paper we consider(More)
Applications structured as parallel task graphs exhibit both data and task parallelism and arise in many domains. Scheduling these applications efficiently on parallel platforms has been a long-standing challenge. In the case of a single homogeneous platform, such as a cluster, results have been obtained both in theory, i.e., guaranteed algorithms, and, in(More)
  • 1