Learn More
The contribution of ammonia-oxidizing archaea (AOA) to nitrogen removal in wastewater treatment plants (WWTPs) remains unknown. This study investigated the abundance of archaeal (AOA) and bacterial (ammonia-oxidizing bacteria (AOB)) amoA genes in eight of Bangkok's municipal WWTPs. AOA amoA genes (3.28 × 10(7) ± 1.74 × 10(7)-2.23 × 10(11) ± 1.92 × 10(11)(More)
Recent evidence from natural environments suggests that in addition to ammonia-oxidizing bacteria, ammonia-oxidizing archaea (AOA) affiliated with Thaumarcheota, a new phylum of the domain Archaea, also oxidize ammonia to nitrite and thus participate in the global nitrogen cycle. Besides natural environments, modern data indicate the presence of(More)
The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed(More)
The communities of nitrifying microorganisms were identified in samples taken from six shrimp ponds in Thailand (five outdoor-earthen ponds and one indoor pond). The sequences of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and nitrite-oxidizing bacteria (NOB) were analyzed after specific PCR amplification of the 16S rRNA or amoA(More)
  • 1